A Low-Cost Method for Tracking the Induction of Apoptosis Using FRET-Based Activity Sensors in Suspension Cells

Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Apoptosis, or programmed cell death, is a tightly regulated cellular event that plays an important role in both normal developmental processes and many pathological states. The induction of apoptosis is tightly regulated through the coordinated action of members of the caspase family of proteases. Here we discuss a relatively inexpensive protocol for monitoring the induction and progression of apoptosis using a genetically encoded fluorescence resonance energy transfer (FRET)-based biosensor of the executioner caspase, caspase-3, in living suspension cells.

Key words

Genetically encoded biosensor Apoptosis Fluorescence resonance energy transfer Caspase 3 Sensor for activated caspases based on FRET (SCAT3) Diepoxybutane 


  1. 1.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308CrossRefPubMedGoogle Scholar
  2. 2.
    Nagata S (1997) Apoptosis by death factor. Cell 88:355–365CrossRefPubMedGoogle Scholar
  3. 3.
    Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in cancer progression and therapy. Integr Biol 3:279–296CrossRefGoogle Scholar
  4. 4.
    Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507CrossRefPubMedGoogle Scholar
  5. 5.
    Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mohamad N, Gutierrez A, Nunez M, Cocca C, Martin G, Cricco G, Medina V, Rivera E, Bergoc R (2005) Mitochondrial apoptotic pathways. Biocell 29:149–161PubMedGoogle Scholar
  7. 7.
    Khosravi-Far R, Esposti MD (2004) Death receptor signals to mitochondria. Cancer Biol Ther 3:1051–1057CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629CrossRefPubMedGoogle Scholar
  9. 9.
    Hail N Jr, Carter BZ, Konopleva M, Andreeff M (2006) Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 11:889–904CrossRefPubMedGoogle Scholar
  10. 10.
    Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63CrossRefPubMedGoogle Scholar
  11. 11.
    Wang ZB, Liu YQ, Cui YF (2005) Pathways to caspase activation. Cell Biol Int 29:489–496CrossRefPubMedGoogle Scholar
  12. 12.
    Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163CrossRefPubMedGoogle Scholar
  13. 13.
    Fas SC, Fritzsching B, Suri-Payer E, Krammer PH (2006) Death receptor signaling and its function in the immune system. Curr Dir Autoimmun 9:1–17PubMedGoogle Scholar
  14. 14.
    Gaur U, Aggarwal BB (2003) Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 66:1403–1408CrossRefPubMedGoogle Scholar
  15. 15.
    Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23:1625–1637CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501CrossRefPubMedGoogle Scholar
  17. 17.
    Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B, Andrews DW (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135:1074–1084CrossRefPubMedGoogle Scholar
  18. 18.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490CrossRefPubMedGoogle Scholar
  19. 19.
    Wu Y, Xing D, Chen WR (2006) Single cell FRET imaging for determination of pathway of tumor cell apoptosis induced by photofrin-PDT. Cell Cycle 5:729–734CrossRefPubMedGoogle Scholar
  20. 20.
    Takemoto K, Nagai T, Miyawaki A, Miura M (2003) Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160:235–243CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614–3666CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Newman RH, Zhang J (2014) The design and application of genetically encodable biosensors based on fluorescent proteins. Methods Mol Biol 1071:1–16CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mank M, Griesbeck O (2008) Genetically encoded calcium indicators. Chem Rev 108:1550–1564CrossRefPubMedGoogle Scholar
  24. 24.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887CrossRefPubMedGoogle Scholar
  25. 25.
    Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530CrossRefPubMedGoogle Scholar
  26. 26.
    Truong K, Sawano A, Mizuno H, Hama H, Tong KI, Mal TK, Miyawaki A, Ikura M (2001) FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol 8:1069–1073CrossRefPubMedGoogle Scholar
  27. 27.
    Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715CrossRefPubMedGoogle Scholar
  28. 28.
    Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99:1084–1091CrossRefPubMedGoogle Scholar
  30. 30.
    Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218CrossRefPubMedGoogle Scholar
  31. 31.
    Allen MD, DiPilato LM, Rahdar M, Ren YR, Chong C, Liu JO, Zhang J (2006) Reading dynamic kinase activity in living cells for high-throughput screening. ACS Chem Biol 1:371–376CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang J, Allen MD (2007) FRET-based biosensors for protein kinases: illuminating the kinome. Mol Biosyst 3:759–765CrossRefPubMedGoogle Scholar
  33. 33.
    Newman RH, Zhang J (2008) Visualization of phosphatase activity in living cells with a FRET-based calcineurin activity sensor. Mol Biosyst 4:496–501CrossRefPubMedGoogle Scholar
  34. 34.
    Mehta S, Aye-Han NN, Ganesan A, Oldach L, Gorshkov K, Zhang J (2014) Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin. eLife 3:e03765CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A, Matsuda M (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411:1065–1068CrossRefPubMedGoogle Scholar
  36. 36.
    Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M (2002) Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 22:6582–6591CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yoshizaki H, Ohba Y, Kurokawa K, Itoh RE, Nakamura T, Mochizuki N, Nagashima K, Matsuda M (2003) Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 162:223–232CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yoshizaki H, Aoki K, Nakamura T, Matsuda M (2006) Regulation of RalA GTPase by phosphatidylinositol 3-kinase as visualized by FRET probes. Biochem Soc Trans 34:851–854CrossRefPubMedGoogle Scholar
  39. 39.
    Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440:1069–1072CrossRefPubMedGoogle Scholar
  40. 40.
    Lohse MJ, Nikolaev VO, Hein P, Hoffmann C, Vilardaga JP, Bunemann M (2008) Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci 29:159–165CrossRefPubMedGoogle Scholar
  41. 41.
    Itoh RE, Kurokawa K, Fujioka A, Sharma A, Mayer BJ, Matsuda M (2005) A FRET-based probe for epidermal growth factor receptor bound non-covalently to a pair of synthetic amphipathic helixes. Exp Cell Res 307:142–152CrossRefPubMedGoogle Scholar
  42. 42.
    Kurokawa K, Mochizuki N, Ohba Y, Mizuno H, Miyawaki A, Matsuda M (2001) A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. J Biol Chem 276:31305–31310CrossRefPubMedGoogle Scholar
  43. 43.
    Sato M, Umezawa Y (2004) Imaging protein phosphorylation by fluorescence in single living cells. Methods 32:451–455CrossRefPubMedGoogle Scholar
  44. 44.
    Mehta S, Zhang J (2011) Reporting from the field: genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu Rev Biochem 80:375–401CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Robinson KH, Yang JR, Zhang J (2014) FRET and BRET-based biosensors in live cell compound screens. Methods Mol Biol 1071:217–225CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tian H, Ip L, Luo H, Chang DC, Luo KQ (2007) A high throughput drug screen based on fluorescence resonance energy transfer (FRET) for anticancer activity of compounds from herbal medicine. Br J Pharmacol 150:321–334CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhu X, Fu A, Luo KQ (2012) A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents. Biochem Biophys Res Commun 418:641–646CrossRefPubMedGoogle Scholar
  48. 48.
    Koike-Kuroda Y, Kakeyama M, Fujimaki H, Tsukahara S (2010) Use of live imaging analysis for evaluation of cytotoxic chemicals that induce apoptotic cell death. Toxicol In Vitro 24:2012–2020CrossRefPubMedGoogle Scholar
  49. 49.
    Yadavilli S, Martinez-Ceballos E, Snowden-Aikens J, Hurst A, Joseph T, Albrecht T, Muganda PM (2007) Diepoxybutane activates the mitochondrial apoptotic pathway and mediates apoptosis in human lymphoblasts through oxidative stress. Toxicol In Vitro 21:1429–1441CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Luo KQ, Yu VC, Pu Y, Chang DC (2001) Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem Biophys Res Commun 283:1054–1060CrossRefPubMedGoogle Scholar
  51. 51.
    Rehm M, Dussmann H, Janicke RU, Tavare JM, Kogel D, Prehn JH (2002) Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J Biol Chem 277:24506–24514CrossRefPubMedGoogle Scholar
  52. 52.
    Tyas L, Brophy VA, Pope A, Rivett AJ, Tavare JM (2000) Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep 1:266–270CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Energy and Environmental StudiesNorth Carolina A&T State UniversityGreensboroUSA
  2. 2.Department of BiologyNorth Carolina A&T State UniversityGreensboroUSA

Personalised recommendations