Advertisement

Detecting Apoptosis, Autophagy, and Necrosis

Protocol
  • 969 Downloads
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

There are many commercially available kits to identify specific types of cell death, but at the present time, there is no simple assay that can distinguish apoptosis, necrosis, and autophagy. Autophagy and apoptosis are highly conserved processes that maintain organism and cellular homeostasis. They are also prime targets for the design of tumor therapeutics. Apoptosis is a highly regulated process involved in removing unwanted or unhealthy cells. Autophagy is a metabolic process, in which proteins and organelles are targeted for degradation in the lysosome. Necrosis is initiated by external factors, such as toxins, infection, or trauma, and results in the unregulated digestion of cell components. We discuss the tools we have developed for a simple protocol for detecting apoptosis or necrosis, as well as a simple technique for detecting autophagy. We discuss the potential pitfalls of the methods, suggest guidelines for designing experiments, and describe step by step protocols to identify apoptotic, necrotic and autophagic cell death of any cell line in response to effector.

Key words

Autophagy Apoptosis Necrosis Cell death Annexin V Phospholipidosis 

References

  1. 1.
    Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    El-Khattouti A, Selimovic D, Haikel Y et al (2013) Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death 6:19Google Scholar
  3. 3.
    Sperandio S, De Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 97:14376–14381CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hengartner MO (1997) Cell death. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor, New YorkGoogle Scholar
  5. 5.
    Parone P, Priault M, James D et al (2003) Apoptosis: bombarding the mitochondria. Essays Biochem 39:41–51CrossRefPubMedGoogle Scholar
  6. 6.
    Ferrer I, Planas AM (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339CrossRefPubMedGoogle Scholar
  7. 7.
    Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501CrossRefPubMedGoogle Scholar
  8. 8.
    Singh NP, Mccoy MT, Tice RR et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefPubMedGoogle Scholar
  9. 9.
    Tone S, Sugimoto K, Tanda K et al (2007) Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res 313:3635–3644CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Siegel C, Mccullough LD (2011) NAD+ depletion or PAR polymer formation: which plays the role of executioner in ischaemic cell death? Acta Physiol 203:225–234CrossRefGoogle Scholar
  11. 11.
    Shah GM, Poirier D, Duchaine C et al (1995) Methods for biochemical study of poly(ADP-ribose) metabolism in vitro and in vivo. Anal Biochem 227:1–13CrossRefPubMedGoogle Scholar
  12. 12.
    Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77CrossRefPubMedGoogle Scholar
  13. 13.
    Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3:295–299CrossRefPubMedGoogle Scholar
  14. 14.
    Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12(Suppl 2):1535–1541CrossRefPubMedGoogle Scholar
  15. 15.
    Yorimitsu T, Klionsky DJ (2005) Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16:1593–1605CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mortimore GE, Lardeux BR, Adams CE (1988) Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J Biol Chem 263:2506–2512PubMedGoogle Scholar
  17. 17.
    Cuervo AM, Knecht E, Terlecky SR et al (1995) Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am J Physiol 269:C1200–C1208PubMedGoogle Scholar
  18. 18.
    Iwata A, Christianson JC, Bucci M et al (2005) Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci U S A 102:13135–13140CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kiffin R, Christian C, Knecht E et al (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15:4829–4840CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mizushima N, Yamamoto A, Matsui M et al (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595CrossRefPubMedGoogle Scholar
  22. 22.
    Scherz-Shouval R, Shvets E, Fass E et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Massey AC, Zhang C, Cuervo AM (2006) Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73:205–235CrossRefPubMedGoogle Scholar
  24. 24.
    Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Oeste CL, Seco E, Patton WF et al (2013) Interactions between autophagic and endo-lysosomal markers in endothelial cells. Histochem Cell Biol 139:659–670CrossRefPubMedGoogle Scholar
  26. 26.
    Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Biederbick A, Kern HF, Elsasser HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66:3–14PubMedGoogle Scholar
  28. 28.
    Niemann A, Takatsuki A, Elsasser HP (2000) The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe. J Histochem Cytochem 48:251–258CrossRefPubMedGoogle Scholar
  29. 29.
    Chan LL, Shen D, Wilkinson AR et al (2012) A novel image-based cytometry method for autophagy detection in living cells. Autophagy 8:1371–1382CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kobayashi S, Volden P, Timm D et al (2010) Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J Biol Chem 285:793–804CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Boya P, Gonzalez-Polo RA, Casares N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Peropadre A, Fernandez Freire P, Herrero O et al (2011) Cellular responses associated with dibucaine-induced phospholipidosis. Chem Res Toxicol 24:185–192CrossRefPubMedGoogle Scholar
  33. 33.
    Anderson N, Borlak J (2006) Drug-induced phospholipidosis. FEBS Lett 580:5533–5540CrossRefPubMedGoogle Scholar
  34. 34.
    Dulbecco R, Vogt M (1954) Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 99:167–182CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Porter K, Nallathambi J, Lin Y et al (2013) Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells: implications for glaucoma pathogenesis. Autophagy 9:581–594CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bar J, Cohen-Noyman E, Geiger B et al (2004) Attenuation of the p53 response to DNA damage by high cell density. Oncogene 23:2128–2137CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.ENZO Life SciencesFarmingdaleUSA

Personalised recommendations