Measurement of Apoptosis by Multiparametric Flow Cytometry

Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Apoptosis remains a critical phenomenon in cell biology, playing a regulatory role in virtually every tissue system. It is particular crucial in the immune system, ranging from immature immune cell development and selection to downregulation of the mature immune response. Apoptosis is a primary mechanism in the action of antitumor drugs, and is thus an important phenomenon in pharmacology, drug discovery, and toxicology. Flow cytometry is the primary technique for measuring apoptosis in suspension cells; many flow cytometry assays have been developed to measure the entire apoptotic process, from the earliest signal transduction events to the late morphological changes in cell size, proteolysis, and DNA degradation. These assays become even more powerful when they can be combined into single multiparametric assays that can document the process of apoptosis in a single tube. The ability of flow cytometry to measure multiple structural and fluorescent characteristics in single cells is uniquely suited to this task. In this methods review, we show how multiple individual assays can be combined in this fashion. Combining early biochemical and late morphological assays together gives a comprehensive and detailed picture of the apoptotic process.

Key words

Apoptosis measurement Flow cytometry Apoptosis assays Multiparametric Caspase 3/7 substrate Caspase 3 immunolabeling Annexin V FLICA (fluorescence linked inhibitor of caspase activity) Covalent binding viability probes DNA binding dyes 



7-aminoactinomycin D




Fetal bovine serum


Fluorescence linked inhibitor of caspase activity


Hanks balanced salt solution


Phosphate buffered saline




Terminal deoxynucleotidyl transferase dUTP nick end labeling


  1. 1.
    Telford WG, King LE, Fraker PJ (1994) Rapid quantitation of apoptosis in pure and heterogeneous cell populations using flow cytometry. J Immunol 172:1–16Google Scholar
  2. 2.
    Afanasev VN et al (1986) Flow cytometry and biochemical analysis of DNA degradation characteristic of two types of cell death. FEBS Lett 194:347CrossRefGoogle Scholar
  3. 3.
    Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1–20CrossRefPubMedGoogle Scholar
  4. 4.
    Telford WG, King LE, Fraker PJ (1991) Evaluation of glucocorticoid-induced DNA fragmentation in mouse thymocytes by flow cytometry. Cell Prolif 24:447–459CrossRefPubMedGoogle Scholar
  5. 5.
    Vermes I, Haanen C, Reutelingsperger C (2000) Flow cytometry of apoptotic cell death. J Immunol Methods 243:167–190CrossRefPubMedGoogle Scholar
  6. 6.
    Darzynkiewicz Z, Galkowski D, Zhao H (2008) Analysis of apoptosis by cytometry using TUNEL assay. Methods 44:250–254CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pozarowski P, Grabarek J, Darzynkiewicz Z (2003) Flow cytometry of apoptosis. In: Robinson JP et al (eds) Current protocols in cytometry. John Wiley and Sons, New York, NY, pp 18.8.1–18.8.34Google Scholar
  8. 8.
    Ormerod MG, Sun X-M, Snowden RT, Davies R, Fearhead H, Cohen GM (1993) Increased membrane permeability in apoptotic thymocytes: a flow cytometric study. Cytometry 14:595–602CrossRefPubMedGoogle Scholar
  9. 9.
    Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P, Macho A, Kroemer G (1996) Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 157:512–521PubMedGoogle Scholar
  10. 10.
    Shynkar VV, Klymchenko AS, Kunzelmann C, Duportail G, Muller CD, Demchenko AP, Freyssinet JM, Mely Y (2007) Fluorescent biomembrane probe for ratiometric detection of apoptosis. J Am Chem Soc 129:2187–2193CrossRefPubMedGoogle Scholar
  11. 11.
    Wlodkowic D, Skommer J, Darzynkiewicz Z (2009) Flow cytometry-based apoptosis detection. Methods Mol Biol 559:19–32CrossRefPubMedGoogle Scholar
  12. 12.
    Wlodkowic D, Skommer J, Darzynkiewicz Z (2010) Cytometry in cell necrobiology revisited. Recent advances and new vistas. Cytometry A 77:591–606CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wlodkowic D, Telford WG, Skommer J, Darzynkiewicz Z (2011) Apoptosis and beyond: cytometry in studies of programmed cell death (invited book chapter). In: Darzykiewicz Z et al (eds) Recent advances in cytometry, methods in cell biology volume 103. Academic, New York, NY, pp 55–99CrossRefGoogle Scholar
  14. 14.
    Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates and functions during apoptosis. Ann Rev Biochem 68:383–424CrossRefPubMedGoogle Scholar
  15. 15.
    Henkart PA (1996) ICE family proteases: mediators of all cell death? Immunity 14:195–201CrossRefGoogle Scholar
  16. 16.
    Lazebnik Y, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP-ribose) polymerase by proteinase with properties like ICE. Nature 371:346–347CrossRefPubMedGoogle Scholar
  17. 17.
    Bedner E, Smolewski P, Amstad P, Darzynkiewicz Z (2000) Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA); correlation with DNA fragmentation. Exp Cell Res 260:308–313CrossRefGoogle Scholar
  18. 18.
    Belloc F, Belaund-Rotureau MA, Lavignolle V, Bascans E, Braz-Pereira E, Durrieu F, Lacombe F (2000) Flow cytometry of caspase-3 activation in preapoptotic leukemic cells. Cytometry 40: 151–160CrossRefPubMedGoogle Scholar
  19. 19.
    Koester SK, Bolton WE (2001) Cytometry of caspases. Methods Cell Biol 63:487–504CrossRefPubMedGoogle Scholar
  20. 20.
    Overbeek R, Yildirim M, Reutelingsperger C, Haane C (1998) Early features of apoptosis detected by four different flow cytometry assays. Apoptosis 3:115–120CrossRefGoogle Scholar
  21. 21.
    Darzynkiewicz Z, Pozarowski P, Lee BW, Johnson GL (2010) Fluorochrome-labeled inhibitors of caspases: convenient in vitro and in vivo markers of apoptotic cells for cytometric analysis. Methods Mol Biol 682:103–114CrossRefGoogle Scholar
  22. 22.
    Komoriya A, Packard BZ, Brown MJ, Wu ML, Henkart PA (2000) Assessment of caspase activities in intact apoptotic thymocytes using cell-permeable fluorogenic caspase substrates. J Exp Med 191:1819–1828CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Packard BZ, Topygin DD, Komoriya A, Brand L (1996) Profluorescent protease substrates: intramolecular dimers described by the exciton model. Proc Natl Acad Sci U S A 93:11640–11645CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Packard BZ, Komoriya A, Brotz TM, Henkart PA (2001) Caspase 8 activity in membrane blebs after anti-Fas ligation. J Immunol 167:5061–5066CrossRefPubMedGoogle Scholar
  25. 25.
    Huang TC, Chen JY (2013) Proteomic analysis reveals that pardaxin triggers apoptotic signaling pathways in human cervical carcinoma HeLa cells: cross talk among the UPR, c-Jun and ROS. Carcinogenesis 34:1833–1842CrossRefPubMedGoogle Scholar
  26. 26.
    Telford WG, Komoriya A, Packard BZ, Bagwell CB (2011) Multiparametric analysis of apoptosis by flow cytometry. In: Hawley TS, Hawley RG (eds) Methods in molecular biology volume 699, flow cytometry protocols, 4th edn. Humana Press, London, pp 203–228CrossRefGoogle Scholar
  27. 27.
    Cen H, Mao F, Aronchik I, Fuentes RJ, Firestone GL (2008) FASEB J online article fj.07-099234Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Experimental Transplantation and Immunology Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations