Detection of Apoptosis: From Bench Side to Clinical Practice

Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Apoptosis or programmed cell death is implicated in several pathological conditions, such as cancer and neurodegenerative diseases. An increasing number of therapies are developed by targeting apoptosis signaling components to either induce or inhibit apoptosis in target cells. For these reasons, it is critical to develop appropriate analytical methods for the detection of apoptotic cell death in the context of monitoring relevant disease progression and therapeutic effects of clinical treatments (e.g., chemotherapy in cancer patients). This review provides an overview of the currently used methods for detection of apoptosis and their applications in research and clinical practice.

Key words

Apoptosis Apoptosis detection In vitro apoptosis detection In vivo apoptosis detection Clinical apoptosis detection DNA fragmentation TUNEL Caspase activation detection Phosphatidylserine externalization 



This chapter reflects the views of the author and should not be constructed to represent FDA’s views or policies.


  1. 1.
    Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H, Shacter E (2003) Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 4:87–91PubMedCrossRefGoogle Scholar
  2. 2.
    Shacter E, Williams JA, Hinson RM, Senturker S, Lee YJ (2000) Oxidative stress interferes with cancer chemotherapy: inhibition of lymphoma cell apoptosis and phagocytosis. Blood 96:307–313PubMedGoogle Scholar
  3. 3.
    Uehara H, Shacter E (2008) Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells. J Immunol 180:2522–2530PubMedCrossRefGoogle Scholar
  4. 4.
    Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885PubMedCrossRefGoogle Scholar
  5. 5.
    Qiao L, Wong BC (2009) Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 12:55–64PubMedCrossRefGoogle Scholar
  6. 6.
    Wong KK (2009) Recent developments in anti-cancer agents targeting the Ras/Raf/MEK/ERK pathway. Recent Pat Anticancer Drug Discov 4:28–35PubMedCrossRefGoogle Scholar
  7. 7.
    Brunelle JK, Zhang B (2010) Apoptosis assays for quantifying the bioactivity of anticancer drug products. Drug Resist Updat 13:172–179PubMedCrossRefGoogle Scholar
  8. 8.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Eum KH, Lee M (2011) Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Mol Cell Biochem 348:61–68PubMedCrossRefGoogle Scholar
  10. 10.
    Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B et al (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498PubMedCrossRefGoogle Scholar
  11. 11.
    Ward TH, Cummings J, Dean E, Greystoke A, Hou JM, Backen A et al (2008) Biomarkers of apoptosis. Br J Cancer 99:841–846PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308PubMedCrossRefGoogle Scholar
  13. 13.
    Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725PubMedCrossRefGoogle Scholar
  14. 14.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501PubMedCrossRefGoogle Scholar
  16. 16.
    Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907PubMedCrossRefGoogle Scholar
  17. 17.
    Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM (1997) Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 272:26159–26165PubMedCrossRefGoogle Scholar
  18. 18.
    Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH et al (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16:1093–1107PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420PubMedGoogle Scholar
  20. 20.
    Park J, Park Y, Kim S (2013) Signal amplification via biological self-assembly of surface-engineered quantum dots for multiplexed subattomolar immunoassays and apoptosis imaging. ACS Nano 7:9416–9427PubMedCrossRefGoogle Scholar
  21. 21.
    Prinzen L, Miserus RJ, Dirksen A, Hackeng TM, Deckers N, Bitsch NJ et al (2007) Optical and magnetic resonance imaging of cell death and platelet activation using annexin a5-functionalized quantum dots. Nano Lett 7:93–100PubMedCrossRefGoogle Scholar
  22. 22.
    Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51PubMedCrossRefGoogle Scholar
  23. 23.
    de Graaf AO, van den Heuvel LP, Dijkman HB, de Abreu RA, Birkenkamp KU, de Witte T et al (2004) Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis. Exp Cell Res 299:533–540PubMedCrossRefGoogle Scholar
  24. 24.
    Terauchi S, Yamamoto T, Yamashita K, Kataoka M, Terada H, Shinohara Y (2005) Molecular basis of morphological changes in mitochondrial membrane accompanying induction of permeability transition, as revealed by immuno-electron microscopy. Mitochondrion 5:248–254PubMedCrossRefGoogle Scholar
  25. 25.
    Galluzzi L, Zamzami N, de La Motte RT, Lemaire C, Brenner C, Kroemer G (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12:803–813PubMedCrossRefGoogle Scholar
  26. 26.
    Loeffler M, Daugas E, Susin SA, Zamzami N, Metivier D, Nieminen AL et al (2001) Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. FASEB J 15:758–767PubMedCrossRefGoogle Scholar
  27. 27.
    Waterhouse NJ, Trapani JA (2003) A new quantitative assay for cytochrome c release in apoptotic cells. Cell Death Differ 10:853–855PubMedCrossRefGoogle Scholar
  28. 28.
    Anantharam V, Kitazawa M, Wagner J, Kaul S, Kanthasamy AG (2002) Caspase-3-dependent proteolytic cleavage of protein kinase Cdelta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. J Neurosci 22:1738–1751PubMedGoogle Scholar
  29. 29.
    Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162PubMedCrossRefGoogle Scholar
  30. 30.
    Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci U S A 97:4666–4671PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Baize S, Leroy EM, Georges-Courbot MC, Capron M, Lansoud-Soukate J, Debre P et al (1999) Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 5:423–426PubMedCrossRefGoogle Scholar
  32. 32.
    de La Motte RT, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T et al (2007) A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 67:6253–6262CrossRefGoogle Scholar
  33. 33.
    Tajeddine N, Galluzzi L, Kepp O, Hangen E, Morselli E, Senovilla L et al (2008) Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene 27:4221–4232PubMedCrossRefGoogle Scholar
  34. 34.
    Metivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I et al (1998) Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61:157–163PubMedCrossRefGoogle Scholar
  35. 35.
    Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bicknell GR, Snowden RT, Cohen GM (1994) Formation of high molecular mass DNA fragments is a marker of apoptosis in the human leukaemic cell line, U937. J Cell Sci 107(Pt 9):2483–2489PubMedGoogle Scholar
  37. 37.
    Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 14:133–151PubMedGoogle Scholar
  38. 38.
    Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556PubMedCrossRefGoogle Scholar
  39. 39.
    Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE et al (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12:3679–3684PubMedPubMedCentralGoogle Scholar
  40. 40.
    Cantor CR, Smith CL, Mathew MK (1988) Pulsed-field gel electrophoresis of very large DNA molecules. Annu Rev Biophys Biophys Chem 17:287–304PubMedCrossRefGoogle Scholar
  41. 41.
    Carle GF, Frank M, Olson MV (1986) Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232:65–68PubMedCrossRefGoogle Scholar
  42. 42.
    Collins AR (2002) The comet assay. Principles, applications, and limitations. Methods Mol Biol 203:163–177PubMedGoogle Scholar
  43. 43.
    Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501PubMedCrossRefGoogle Scholar
  44. 44.
    Negoescu A, Lorimier P, Labat-Moleur F, Drouet C, Robert C, Guillermet C et al (1996) In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J Histochem Cytochem 44:959–968PubMedCrossRefGoogle Scholar
  45. 45.
    Darzynkiewicz Z, Galkowski D, Zhao H (2008) Analysis of apoptosis by cytometry using TUNEL assay. Methods 44:250–254PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gorczyca W, Gong J, Ardelt B, Traganos F, Darzynkiewicz Z (1993) The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents. Cancer Res 53:3186–3192PubMedGoogle Scholar
  47. 47.
    Bedner E, Smolewski P, Amstad P, Darzynkiewicz Z (2000) Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp Cell Res 259:308–313PubMedCrossRefGoogle Scholar
  48. 48.
    Darzynkiewicz Z, Bedner E, Smolewski P, Lee BW, Johnson GL (2002) Detection of caspases activation in situ by fluorochrome-labeled inhibitors of caspases (FLICA). Methods Mol Biol 203:289–299PubMedGoogle Scholar
  49. 49.
    Darzynkiewicz Z, Pozarowski P, Lee BW, Johnson GL (2011) Fluorochrome-labeled inhibitors of caspases: convenient in vitro and in vivo markers of apoptotic cells for cytometric analysis. Methods Mol Biol 682:103–114PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Barreiro-Iglesias A, Shifman MI (2012) Use of fluorochrome-labeled inhibitors of caspases to detect neuronal apoptosis in the whole-mounted lamprey brain after spinal cord injury. Enzyme Res 2012:835731PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Barreiro-Iglesias A, Shifman MI (2015) Detection of activated caspase-8 in injured spinal axons by using fluorochrome-labeled inhibitors of caspases (FLICA). Methods Mol Biol 1254:329–339PubMedCrossRefGoogle Scholar
  52. 52.
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290PubMedCrossRefGoogle Scholar
  53. 53.
    Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424PubMedCrossRefGoogle Scholar
  54. 54.
    Liu J, Bhalgat M, Zhang C, Diwu Z, Hoyland B, Klaubert DH (1999) Fluorescent molecular probes V: a sensitive caspase-3 substrate for fluorometric assays. Bioorg Med Chem Lett 9:3231–3236PubMedCrossRefGoogle Scholar
  55. 55.
    Boeneman K, Mei BC, Dennis AM, Bao G, Deschamps JR, Mattoussi H et al (2009) Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc 131:3828–3829PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lee GH, Lee EJ, Hah SS (2014) TAMRA- and Cy5-labeled probe for efficient kinetic characterization of caspase-3. Anal Biochem 446:22–24PubMedCrossRefGoogle Scholar
  57. 57.
    Elphick LM, Meinander A, Mikhailov A, Richard M, Toms NJ, Eriksson JE et al (2006) Live cell detection of caspase-3 activation by a Discosoma-red-fluorescent-protein-based fluorescence resonance energy transfer construct. Anal Biochem 349:148–155PubMedCrossRefGoogle Scholar
  58. 58.
    Kawai H, Suzuki T, Kobayashi T, Sakurai H, Ohata H, Honda K et al (2005) Simultaneous real-time detection of initiator- and effector-caspase activation by double fluorescence resonance energy transfer analysis. J Pharmacol Sci 97:361–368PubMedCrossRefGoogle Scholar
  59. 59.
    Xu X, Gerard AL, Huang BC, Anderson DC, Payan DG, Luo Y (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res 26:2034–2035PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    He L, Wu X, Meylan F, Olson DP, Simone J, Hewgill D et al (2004) Monitoring caspase activity in living cells using fluorescent proteins and flow cytometry. Am J Pathol 164:1901–1913PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Luo KQ, Yu VC, Pu Y, Chang DC (2001) Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem Biophys Res Commun 283:1054–1060PubMedCrossRefGoogle Scholar
  62. 62.
    Luo KQ, Yu VC, Pu Y, Chang DC (2003) Measuring dynamics of caspase-8 activation in a single living HeLa cell during TNFalpha-induced apoptosis. Biochem Biophys Res Commun 304:217–222PubMedCrossRefGoogle Scholar
  63. 63.
    Wu X, Simone J, Hewgill D, Siegel R, Lipsky PE, He L (2006) Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe. Cytometry A 69:477–486PubMedCrossRefGoogle Scholar
  64. 64.
    Jones J, Heim R, Hare E, Stack J, Pollok BA (2000) Development and application of a GFP-FRET intracellular caspase assay for drug screening. J Biomol Screen 5:307–318PubMedCrossRefGoogle Scholar
  65. 65.
    Zhu X, Fu A, Luo KQ (2012) A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents. Biochem Biophys Res Commun 418:641–646PubMedCrossRefGoogle Scholar
  66. 66.
    Bozza WP, Di X, Takeda K, Rivera Rosado LA, Pariser S, Zhang B (2014) The use of a stably expressed FRET biosensor for determining the potency of cancer drugs. PLoS One 9, e107010PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hoff BA, Bhojani MS, Rudge J, Chenevert TL, Meyer CR, Galban S et al (2012) DCE and DW-MRI monitoring of vascular disruption following VEGF-Trap treatment of a rat glioma model. NMR Biomed 25:935–942PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Foroutan P, Kreahling JM, Morse DL, Grove O, Lloyd MC, Reed D et al (2013) Diffusion MRI and novel texture analysis in osteosarcoma xenotransplants predicts response to anti-checkpoint therapy. PLoS One 8, e82875PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL et al (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci U S A 97:1754–1759PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kim H, Morgan DE, Buchsbaum DJ, Zeng H, Grizzle WE, Warram JM et al (2008) Early therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res 68:8369–8376PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Oliver PG, LoBuglio AF, Zhou T, Forero A, Kim H, Zinn KR et al (2012) Effect of anti-DR5 and chemotherapy on basal-like breast cancer. Breast Cancer Res Treat 133:417–426PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wang H, Galban S, Wu R, Bowman BM, Witte A, Vetter K et al (2013) Molecular imaging reveals a role for AKT in resistance to cisplatin for ovarian endometrioid adenocarcinoma. Clin Cancer Res 19:158–169PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhang F, Zhu L, Liu G, Hida N, Lu G, Eden HS et al (2011) Multimodality imaging of tumor response to doxil. Theranostics 1:302–309PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Schmitz JE, Kettunen MI, Hu DE, Brindle KM (2005) 1H MRS-visible lipids accumulate during apoptosis of lymphoma cells in vitro and in vivo. Magn Reson Med 54:43–50PubMedCrossRefGoogle Scholar
  75. 75.
    Jagannathan NR, Singh M, Govindaraju V, Raghunathan P, Coshic O, Julka PK et al (1998) Volume localized in vivo proton MR spectroscopy of breast carcinoma: variation of water-fat ratio in patients receiving chemotherapy. NMR Biomed 11:414–422PubMedCrossRefGoogle Scholar
  76. 76.
    Kumar M, Jagannathan NR, Seenu V, Dwivedi SN, Julka PK, Rath GK (2006) Monitoring the therapeutic response of locally advanced breast cancer patients: sequential in vivo proton MR spectroscopy study. J Magn Reson Imaging 24:325–332PubMedCrossRefGoogle Scholar
  77. 77.
    Lyng H, Sitter B, Bathen TF, Jensen LR, Sundfor K, Kristensen GB et al (2007) Metabolic mapping by use of high-resolution magic angle spinning 1H MR spectroscopy for assessment of apoptosis in cervical carcinomas. BMC Cancer 7:11PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zhai G, Kim H, Sarver D, Samuel S, Whitworth L, Umphrey H et al (2014) Early therapy assessment of combined anti-DR5 antibody and carboplatin in triple-negative breast cancer xenografts in mice using diffusion-weighted imaging and (1)H MR spectroscopy. J Magn Reson Imaging 39:1588–1594PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM et al (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556PubMedCrossRefGoogle Scholar
  80. 80.
    Wood BL, Gibson DF, Tait JF (1996) Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations. Blood 88:1873–1880PubMedGoogle Scholar
  81. 81.
    Blankenberg FG, Kalinyak J, Liu L, Koike M, Cheng D, Goris ML et al (2006) 99mTc-HYNIC-annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with anti-Fas ligand antibody. Eur J Nucl Med Mol Imaging 33:566–574PubMedCrossRefGoogle Scholar
  82. 82.
    Blankenberg FG, Vanderheyden JL, Strauss HW, Tait JF (2006) Radiolabeling of HYNIC-annexin V with technetium-99m for in vivo imaging of apoptosis. Nat Protoc 1:108–110PubMedCrossRefGoogle Scholar
  83. 83.
    Belhocine T, Steinmetz N, Green A, Rigo P (2003) In vivo imaging of chemotherapy-induced apoptosis in human cancers. Ann N Y Acad Sci 1010:525–529PubMedCrossRefGoogle Scholar
  84. 84.
    Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K et al (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci U S A 95:6349–6354PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kemerink GJ, Liu X, Kieffer D, Ceyssens S, Mortelmans L, Verbruggen AM et al (2003) Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med 44:947–952PubMedGoogle Scholar
  86. 86.
    Ogura Y, Krams SM, Martinez OM, Kopiwoda S, Higgins JP, Esquivel CO et al (2000) Radiolabeled annexin V imaging: diagnosis of allograft rejection in an experimental rodent model of liver transplantation. Radiology 214:795–800PubMedCrossRefGoogle Scholar
  87. 87.
    Belhocine T, Steinmetz N, Hustinx R, Bartsch P, Jerusalem G, Seidel L et al (2002) Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8:2766–2774PubMedGoogle Scholar
  88. 88.
    Blankenberg FG, Naumovski L, Tait JF, Post AM, Strauss HW (2001) Imaging cyclophosphamide-induced intramedullary apoptosis in rats using 99mTc-radiolabeled annexin V. J Nucl Med 42:309–316PubMedGoogle Scholar
  89. 89.
    Luo QY, Zhang ZY, Wang F, Lu HK, Guo YZ, Zhu RS (2005) Preparation, in vitro and in vivo evaluation of (99m)Tc-Annexin B1: a novel radioligand for apoptosis imaging. Biochem Biophys Res Commun 335:1102–1106PubMedCrossRefGoogle Scholar
  90. 90.
    Lahorte CM, Van de Wiele C, Bacher K, van den Bossche B, Thierens H, Van BS et al (2003) Biodistribution and dosimetry study of 123I-rh-annexin V in mice and humans. Nucl Med Commun 24:871–880PubMedGoogle Scholar
  91. 91.
    Dekker B, Keen H, Lyons S, Disley L, Hastings D, Reader A et al (2005) MBP-annexin V radiolabeled directly with iodine-124 can be used to image apoptosis in vivo using PET. Nucl Med Biol 32:241–252PubMedCrossRefGoogle Scholar
  92. 92.
    Dekker B, Keen H, Shaw D, Disley L, Hastings D, Hadfield J et al (2005) Functional comparison of annexin V analogues labeled indirectly and directly with iodine-124. Nucl Med Biol 32:403–413PubMedCrossRefGoogle Scholar
  93. 93.
    Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ et al (2005) Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 32:395–402PubMedCrossRefGoogle Scholar
  94. 94.
    Stafford JH, Hao G, Best AM, Sun X, Thorpe PE (2013) Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine. PLoS One 8, e84864PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Murakami Y, Takamatsu H, Taki J, Tatsumi M, Noda A, Ichise R et al (2004) 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging 31:469–474PubMedCrossRefGoogle Scholar
  96. 96.
    Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecomte R et al (2007) PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging 34:247–258PubMedCrossRefGoogle Scholar
  97. 97.
    Assadi M, Nemati R, Nabipour I, Salimipour H, Amini A (2011) Radiolabeled annexin V imaging: a useful technique for determining apoptosis in multiple sclerosis. Med Hypotheses 77:43–46PubMedCrossRefGoogle Scholar
  98. 98.
    Post AM, Katsikis PD, Tait JF, Geaghan SM, Strauss HW, Blankenberg FG (2002) Imaging cell death with radiolabeled annexin V in an experimental model of rheumatoid arthritis. J Nucl Med 43:1359–1365PubMedGoogle Scholar
  99. 99.
    Lehner S, Todica A, Brunner S, Uebleis C, Wang H, Wangler C et al (2012) Temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction: an in vivo imaging study in mice. Mol Imaging 11:461–470PubMedGoogle Scholar
  100. 100.
    Lehner S, Todica A, Vanchev Y, Uebleis C, Wang H, Herrler T, et al. (2014) In vivo monitoring of parathyroid hormone treatment after myocardial infarction in mice with [68Ga]annexin A5 and [18F]fluorodeoxyglucose positron emission tomography. Mol Imaging 13Google Scholar
  101. 101.
    Lampl Y, Lorberboym M, Blankenberg FG, Sadeh M, Gilad R (2006) Annexin V SPECT imaging of phosphatidylserine expression in patients with dementia. Neurology 66:1253–1254PubMedCrossRefGoogle Scholar
  102. 102.
    Belhocine T, Steinmetz N, Li C, Green A, Blankenberg FG (2004) The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat 3:23–32PubMedCrossRefGoogle Scholar
  103. 103.
    Fang W, Wang F, Ji S, Zhu X, Meier HT, Hellman RS et al (2007) SPECT imaging of myocardial infarction using 99mTc-labeled C2A domain of synaptotagmin I in a porcine ischemia-reperfusion model. Nucl Med Biol 34:917–923PubMedCrossRefGoogle Scholar
  104. 104.
    Wang F, Fang W, Zhang MR, Zhao M, Liu B, Wang Z et al (2011) Evaluation of chemotherapy response in VX2 rabbit lung cancer with 18F-labeled C2A domain of synaptotagmin I. J Nucl Med 52:592–599PubMedCrossRefGoogle Scholar
  105. 105.
    Zhao M, Zhu X, Ji S, Zhou J, Ozker KS, Fang W et al (2006) 99mTc-labeled C2A domain of synaptotagmin I as a target-specific molecular probe for noninvasive imaging of acute myocardial infarction. J Nucl Med 47:1367–1374PubMedGoogle Scholar
  106. 106.
    Hoebers FJ, Kartachova M, de Bois J, van den Brekel MW, van Tinteren H, van Herk M et al (2008) 99mTc Hynic-rh-Annexin V scintigraphy for in vivo imaging of apoptosis in patients with head and neck cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 35:509–518PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Rottey S, van den Bossche B, Slegers G, Van BS, Van de Wiele C (2009) Influence of chemotherapy on the biodistribution of [99mTc]hydrazinonicotinamide annexin V in cancer patients. Q J Nucl Med Mol Imaging 53:127–132PubMedGoogle Scholar
  108. 108.
    Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med 51:837–840PubMedCrossRefGoogle Scholar
  109. 109.
    Cohen A, Ziv I, Aloya T, Levin G, Kidron D, Grimberg H et al (2007) Monitoring of chemotherapy-induced cell death in melanoma tumors by N, N′-Didansyl-L-cystine. Technol Cancer Res Treat 6:221–234PubMedCrossRefGoogle Scholar
  110. 110.
    Reshef A, Shirvan A, Grimberg H, Levin G, Cohen A, Mayk A et al (2007) Novel molecular imaging of cell death in experimental cerebral stroke. Brain Res 1144:156–164PubMedCrossRefGoogle Scholar
  111. 111.
    Damianovich M, Ziv I, Heyman SN, Rosen S, Shina A, Kidron D et al (2006) ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur J Nucl Med Mol Imaging 33:281–291PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Aloya R, Shirvan A, Grimberg H, Reshef A, Levin G, Kidron D et al (2006) Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis 11:2089–2101PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Grimberg H, Levin G, Shirvan A, Cohen A, Yogev-Falach M, Reshef A et al (2009) Monitoring of tumor response to chemotherapy in vivo by a novel small-molecule detector of apoptosis. Apoptosis 14:257–267PubMedCrossRefGoogle Scholar
  114. 114.
    Cohen A, Shirvan A, Levin G, Grimberg H, Reshef A, Ziv I (2009) From the Gla domain to a novel small-molecule detector of apoptosis. Cell Res 19:625–637PubMedCrossRefGoogle Scholar
  115. 115.
    Hoglund J, Shirvan A, Antoni G, Gustavsson SA, Langstrom B, Ringheim A et al (2011) 18F-ML-10, a PET tracer for apoptosis: first human study. J Nucl Med 52:720–725PubMedCrossRefGoogle Scholar
  116. 116.
    Cazzaniga M, Decensi A, Pruneri G, Puntoni M, Bottiglieri L, Varricchio C et al (2013) The effect of metformin on apoptosis in a breast cancer presurgical trial. Br J Cancer 109:2792–2797PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Dai G, Tong Y, Chen X, Ren Z, Ying X, Yang F et al (2015) Myricanol induces apoptotic cell death and anti-tumor activity in non-small cell lung carcinoma in vivo. Int J Mol Sci 16:2717–2731PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sooriakumaran P, Coley HM, Fox SB, Macanas-Pirard P, Lovell DP, Henderson A et al (2009) A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer. Anticancer Res 29:1483–1488PubMedGoogle Scholar
  119. 119.
    Hight MR, Cheung YY, Nickels ML, Dawson ES, Zhao P, Saleh S et al (2014) A peptide-based positron emission tomography probe for in vivo detection of caspase activity in apoptotic cells. Clin Cancer Res 20:2126–2135PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zhou D, Chu W, Chen DL, Wang Q, Reichert DE, Rothfuss J et al (2009) [18F]- and [11C]-labeled N-benzyl-isatin sulfonamide analogues as PET tracers for apoptosis: synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98. Org Biomol Chem 7:1337–1348PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Zhou D, Chu W, Rothfuss J, Zeng C, Xu J, Jones L et al (2006) Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg Med Chem Lett 16:5041–5046PubMedCrossRefGoogle Scholar
  122. 122.
    Nguyen QD, Smith G, Glaser M, Perumal M, Arstad E, Aboagye EO (2009) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl Acad Sci U S A 106:16375–16380PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Chen DL, Engle JT, Griffin EA, Miller JP, Chu W, Zhou D et al (2015) Imaging Caspase-3 Activation as a Marker of Apoptosis-Targeted Treatment Response in Cancer. Mol Imaging Biol 17(3):384–393PubMedCrossRefGoogle Scholar
  124. 124.
    Xia CF, Chen G, Gangadharmath U, Gomez LF, Liang Q, Mu F et al (2013) In vitro and in vivo evaluation of the caspase-3 substrate-based radiotracer [(18)F]-CP18 for PET imaging of apoptosis in tumors. Mol Imaging Biol 15:748–757PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Office of Biotechnology Products, Center for Drug Evaluation and ResearchFood and Drug AdministrationSilver SpringUSA

Personalised recommendations