An Overview of Apoptosis Methods in Toxicological Research: Recent Updates

Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Apoptosis is the most common form of programmed cell death. Apoptosis plays a critical role in many physiological functions, and its dysregulation is an underlying defect in various diseases, including cancer. In fact, many toxicants and chemotherapeutic drugs exert their mechanisms of action through modulation of the apoptosis process. Thus, interest in the apoptosis process, as well as the methods used to assess and quantify its various aspects has continued to spike. This chapter provides a brief overview of the apoptosis process, the most common apoptosis methods, and the principles upon which these methods function. Furthermore, this chapter overviews the most recent improvements and trends in apoptosis methods, and introduces Apoptosis Methods in Toxicology book content. The information provided is useful to novice scientists, as well as the more advanced scientist.

Key words

Apoptosis methods Toxicology Recent improvements Review 


  1. 1.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Goldar S, Khaniani MS, Derakhshan SM, Baradaran B (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 16: 2129–2144CrossRefPubMedGoogle Scholar
  3. 3.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Monier B, Suzanne M (2015) The morphogenetic role of apoptosis. Curr Top Dev Biol 114:335–362CrossRefPubMedGoogle Scholar
  5. 5.
    Li K, Wu D, Chen X, Zhang T, Zhang L, Yi Y, Miao Z, Jin N, Bi X, Wang H, Xu J, Wang D (2014) Current and emerging biomarkers of cell death in human disease. Biomed Res Int 2014:690103PubMedPubMedCentralGoogle Scholar
  6. 6.
    Tower J (2015) Programmed cell death in aging. Ageing Res Rev 23:90–100CrossRefPubMedGoogle Scholar
  7. 7.
    Sankari SL, Babu NA, Rajesh E, Kasthuri M (2015) Apoptosis in immune-mediated diseases. J Pharm Bioallied Scii 7:S200–S202Google Scholar
  8. 8.
    Sarvothaman S, Undi RB, Pasupuleti SR, Gutti U, Gutti RK (2015) Apoptosis: role in myeloid cell development. Blood Res 50:73–79CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lopez J, Tait SW (2015) Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer 112:957–962CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Radogna F, Dicato M, Diederich M (2015) Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol 94:1–11CrossRefPubMedGoogle Scholar
  11. 11.
    Obulesu M, Lakshmi MJ (2014) Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res 39:2301–2312CrossRefPubMedGoogle Scholar
  12. 12.
    Koff JL, Ramachandiran S, Bernal-Mizrachi L (2015) A time to kill: targeting apoptosis in cancer. Int J Mol Sci 16:2942–2955CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X (2015) Molecular imaging of apoptosis: from micro to macro. Theranostics 5: 559–582CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kim YE, Chen J, Chan JR, Langen R (2010) Engineering a polarity-sensitive biosensor for time-lapse imaging of apoptotic processes and degeneration. Nat Methods 7:67–73CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39: 407–427CrossRefPubMedGoogle Scholar
  16. 16.
    Hankins HM, Baldridge RD, Xu P, Graham TR (2015) Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16:35–47CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kanemura S, Tsuchiya A, Kanno T, Nakano T, Nishizaki T (2015) Phosphatidylinositol induces caspase-independent apoptosis of malignant pleural Mesothelioma cells by accumulating AIF in the nucleus. Cell Physiol Biochem 36:1037–1048CrossRefPubMedGoogle Scholar
  21. 21.
    Rello-Varona S, Herrero-Martin D, Lopez-Alemany R, Munoz-Pinedo C, Tirado OM (2015) “(Not) all (dead) things share the same breath”: identification of cell death mechanisms in anticancer therapy. Cancer Res 75:913–917CrossRefPubMedGoogle Scholar
  22. 22.
    Li MX, Dewson G (2015) Mitochondria and apoptosis: emerging concepts. F1000Prime Rep 7Google Scholar
  23. 23.
    Degterev A, Zhou W, Maki JL, Yuan J (2014) Assays for necroptosis and activity of RIP kinases. Methods Enzymol 545:1–33CrossRefPubMedGoogle Scholar
  24. 24.
    Wu H, Che X, Zheng Q, Wu A, Pan K, Shao A, Wu Q, Zhang J, Hong Y (2014) Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci 10:1072–1083CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nakahira K, Cloonan SM, Mizumura K, Choi AM, Ryter SW (2014) Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxid Redox Signal 20:474–494CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu B, Bao JK, Yang JM, Cheng Y (2013) Targeting autophagic pathways for cancer drug discovery. Chin J Cancer 32:113–120CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wu HJ, Pu JL, Krafft PR, Zhang JM, Chen S (2015) The molecular mechanisms between autophagy and apoptosis: potential role in central nervous system disorders. Cell Mol Neurobiol 35:85–99CrossRefPubMedGoogle Scholar
  28. 28.
    Lalaoui N, Lindqvist LM, Sandow JJ, Ekert PG (2015) The molecular relationships between apoptosis, autophagy and necroptosis. Semin Cell Dev Biol 39:63–69CrossRefPubMedGoogle Scholar
  29. 29.
    Campisi L, Cummings RJ, Blander JM (2014) Death-defining immune responses after apoptosis. Am J Transplant 14:1488–1498CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bucur O, Stancu AL, Khosravi-Far R, Almasan A (2012) Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death Dis 3, e263CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ulukaya E, Acilan C, Ari F, Ikitimur E, Yilmaz Y (2011) A glance at the methods for detection of apoptosis qualitatively and quantitatively. Turkish J Biochem 36:261–269Google Scholar
  32. 32.
    Squier MK, Cohen JJ (2001) Standard quantitative assays for apoptosis. Mol Biotechnol 19:305–312CrossRefPubMedGoogle Scholar
  33. 33.
    Yadavilli S, Muganda PM (2004) Diepoxybutane induces caspase and p53-mediated apoptosis in human lymphoblasts. Toxicol Appl Pharmacol 195:154–165CrossRefPubMedGoogle Scholar
  34. 34.
    Kim YE, Chen J, Langen R, Chan JR (2010) Monitoring apoptosis and neuronal degeneration by real-time detection of phosphatidylserine externalization using a polarity-sensitive indicator of viability and apoptosis. Nat Protoc 5:1396–1405CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rahbar Saadat Y, Saeidi N, Zununi Vahed S, Barzegari A, Barar J (2015) An update to DNA ladder assay for apoptosis detection. Bioimpacts 5:25–28CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    McStay GP, Green DR (2014) Measuring apoptosis: caspase inhibitors and activity assays. Cold Spring Harb Protoc 2014:799–806PubMedGoogle Scholar
  37. 37.
    Nicholls SB, Hyman BT (2014) Measuring caspase activity in vivo. Methods Enzymol 544:251–269CrossRefPubMedGoogle Scholar
  38. 38.
    Tang Y (2014) A one-step imaging assay to monitor cell cycle state and apoptosis in mammalian cells. Curr Protoc Chem Biol 6:1–5CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Butterick TA, Duffy CM, Lee RE, Billington CJ, Kotz CM, Nixon JP (2014) Use of a caspase multiplexing assay to determine apoptosis in a hypothalamic cell model. J Vis Exp. doi: 10.3791/51305 PubMedPubMedCentralGoogle Scholar
  40. 40.
    Yamaguchi Y, Kuranaga E, Nakajima Y, Koto A, Takemoto K, Miura M (2014) In vivo monitoring of caspase activation using a fluorescence resonance energy transfer-based fluorescent probe. Methods Enzymol 544:299–325CrossRefPubMedGoogle Scholar
  41. 41.
    Bai L, Wang S (2014) Targeting apoptosis pathways for new cancer therapeutics. Annu Rev Med 65:139–155CrossRefPubMedGoogle Scholar
  42. 42.
    Elkholi R, Renault TT, Serasinghe MN, Chipuk JE (2014) Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab 2:16CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Burstein HJ, Mangu PB, Somerfield MR, Schrag D, Samson D, Holt L, Zelman D, Ajani JA, American Society of Clinical O (2011) American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays. J Clin Oncol 29:3328–3330CrossRefPubMedGoogle Scholar
  44. 44.
    Bosserman L, Rogers K, Willis C, Davidson D, Whitworth P, Karimi M, Upadhyaya G, Rutledge J, Hallquist A, Perree M, Presant CA (2015) Application of a drug-induced apoptosis assay to identify treatment strategies in recurrent or metastatic breast cancer. PLoS One 10, e0122609CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen H, Zhang J, Gao Y, Liu S, Koh K, Zhu X, Yin Y (2015) Sensitive cell apoptosis assay based on caspase-3 activity detection with graphene oxide-assisted electrochemical signal amplification. Biosens Bioelectron 68:777–782CrossRefPubMedGoogle Scholar
  46. 46.
    Huang X, Liang Y, Ruan L, Ren J (2014) Chemiluminescent detection of cell apoptosis enzyme by gold nanoparticle-based resonance energy transfer assay. Anal Bioanal Chem 406:5677–5684CrossRefPubMedGoogle Scholar
  47. 47.
    Pfister C, Pfrommer H, Tatagiba MS, Roser F (2015) Detection and quantification of apoptosis in primary cells using Taqman(R) protein assay. Methods Mol Biol 1219:57–73CrossRefPubMedGoogle Scholar
  48. 48.
    Wurstle ML, Zink E, Prehn JH, Rehm M (2014) From computational modelling of the intrinsic apoptosis pathway to a systems-based analysis of chemotherapy resistance: achievements, perspectives and challenges in systems medicine. Cell Death Dis 5, e1258CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Terranova N, Rebuzzini P, Mazzini G, Borella E, Redi CA, Zuccotti M, Garagna S, Magni P (2014) Mathematical modeling of growth and death dynamics of mouse embryonic stem cells irradiated with gamma-rays. J Theor Biol 363:374–380CrossRefPubMedGoogle Scholar
  50. 50.
    Flusberg DA, Sorger PK (2015) Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol 25:446–458CrossRefPubMedGoogle Scholar
  51. 51.
    Xia X, Owen MS, Lee RE, Gaudet S (2014) Cell-to-cell variability in cell death: can systems biology help us make sense of it all? Cell Death Dis 5, e1261CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BiologyNorth Carolina A&T State UniversityGreensboroUSA

Personalised recommendations