Liposomes in Apoptosis Induction and Cancer Therapy

Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Cancer is the leading cause of death with multiple obstacles in therapeutic arsenals employed to date. Apoptosis induction in cancer cells has hitherto been a prominent unresolved obstacle for a few decades. Liposomes with multiple merits were extensively employed to entrap several types of anticancer agents, biomolecules and imaging agents to achieve substantial therapeutic effect for various types of cancers. Multifunctional liposomes with enhanced biocompatible properties were designed to enhance the therapeutic effect. Despite the promising drug delivery strategies and significantly reduced toxicity of the liposomal formulations a few demerits still limit their success considerably. This chapter reviews recent advances in liposomal formulations, methods of therapeutic loaded liposomal preparation, their merits and demerits. A few challenges associated with liposomal drug delivery and apoptosis induction are also summarized.

Key words

Apoptosis Liposomes Cancer Multidrug resistance 



The authors sincerely thank Professor Dr. Yukio Nagasaki, Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan for this generous support.


  1. 1.
    Obulesu M, Lakshmi MJ (2014) Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res 39:2301–2312CrossRefPubMedGoogle Scholar
  2. 2.
    Sateesh Madhav NV, Ojha A, Saini A (2015) A platform for liposomal drug delivery. Int J Pharm Drug Anal 3:6–11Google Scholar
  3. 3.
    Musacchio T, Torchilin VP (2010) Recent developments in lipid-based pharmaceutical nanocarriers. Front Biosci (Landmark Ed) 16:1388–1412CrossRefGoogle Scholar
  4. 4.
    Bitounis D, Fanciullino R, Iliadis A et al (2012) Optimizing druggability through liposomal formulations: new approaches to an old concept. ISRN Pharm 2012:738432PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sawant RR, Torchilin VP (2012) Challenges in development of targeted liposomal therapeutics. AAPS J 14:303–315CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mallick S, Choi JS (2014) Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J Nanosci Nanotechnol 14:755–765CrossRefPubMedGoogle Scholar
  7. 7.
    Apostolova N, Victor VM (2014) Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal 22(8):686–729CrossRefGoogle Scholar
  8. 8.
    Farooqi AA, Rehman ZU, Muntane J (2014) Antisense therapeutics in oncology: current status. Onco Targets Ther 7:2035–2042CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Limasale YD, Tezcaner A, Ozen C et al (2015) Epidermal growth factor receptor-targeted immunoliposomes for delivery of celecoxib to cancer cells. Int J Pharm 479:364–373CrossRefPubMedGoogle Scholar
  10. 10.
    Yallapu MM, Jaggi M, Chauhan SC (2012) Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today 17:71–80CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104:1322–1331CrossRefPubMedGoogle Scholar
  12. 12.
    Pandelidou M, Dimas K, Georgopoulos A et al (2011) Preparation and characterization of lyophilized EGG PC liposomes incorporating curcumin and evaluation of its activity against colorectal cancer cell lines. J Nanosci Nanotechnol 11:1259–1266CrossRefPubMedGoogle Scholar
  13. 13.
    Narayanan NK, Nargi D, Randolph C et al (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 125:1–8CrossRefPubMedGoogle Scholar
  14. 14.
    Mulik RS, Monkkonen J, Juvonen RO et al (2010) Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm 398:190–203CrossRefPubMedGoogle Scholar
  15. 15.
    Wang XX, Li YB, Yao HJ et al (2011) The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 32:5673–5687CrossRefPubMedGoogle Scholar
  16. 16.
    Qi X, Chu Z, Mahller YY et al (2009) Cancer-selective targeting and cytotoxicity by liposomal-coupled lysosomal saposin C protein. Clin Cancer Res 15:5840–5851CrossRefPubMedGoogle Scholar
  17. 17.
    Li Y, Yuan J, Yang Q et al (2014) Immunoliposome co-delivery of bufalin and anti-CD40 antibody adjuvant induces synergetic therapeutic efficacy against melanoma. Int J Nanomedicine 9:5683–5700PubMedPubMedCentralGoogle Scholar
  18. 18.
    Araki T, Ogawara KI, Suzuki H et al (2015) Augmented EPR effect by photo-triggered tumor vascular treatment improved therapeutic efficacy of liposomal paclitaxel in mice bearing tumors with low permeable vasculature. J Control Release 200C:106–114CrossRefGoogle Scholar
  19. 19.
    Zhang L, Yao HJ, Yu Y et al (2012) Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials 33:565–582CrossRefPubMedGoogle Scholar
  20. 20.
    Neijzen R, Wong MQ, Gill N et al (2014) Irinophore C™, a lipid nanoparticulate formulation of irinotecan, improves vascular function, increases the delivery of sequentially administered 5-FU in HT-29 tumors, and controls tumor growth in patient derived xenografts of colon cancer. J Control Release 199C:72–83Google Scholar
  21. 21.
    Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170CrossRefPubMedGoogle Scholar
  22. 22.
    Gabizon A, Shmeeda H, Barenholz Y et al (2003) Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet 42:419–436CrossRefPubMedGoogle Scholar
  23. 23.
    Silverman L, Barenholz Y (2015) In vitro experiments showing enhanced release of doxorubicin from Doxil® in the presence of ammonia may explain drug release at tumor site. Nanomedicine 11(7):1841–1850PubMedGoogle Scholar
  24. 24.
    Zhang Q, Ran R, Zhang L et al (2015) Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system. J Control Release 197:208–218CrossRefPubMedGoogle Scholar
  25. 25.
    Ramadass SK, Anantharaman NV, Subramanian S et al (2015) Paclitaxel/Epigallocatechin gallate coloaded liposome: a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells. Colloids Surf B: Biointerfaces 125:65–72CrossRefPubMedGoogle Scholar
  26. 26.
    Kwon OJ, Kang E, Kim S et al (2011) Viral genome DNA/lipoplexes elicit in situ oncolytic viral replication and potent antitumor efficacy via systemic delivery. J Control Release 155:317–325CrossRefPubMedGoogle Scholar
  27. 27.
    Jiang Q, Dai L, Cheng L et al (2013) Efficient inhibition of intraperitoneal ovarian cancer growth in nude mice by liposomal delivery of short hairpin RNA against STAT3. J Obstet Gynaecol Res 39:701–709CrossRefPubMedGoogle Scholar
  28. 28.
    Li Q, Yan Z, Li F et al (2012) The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells. Nanotechnology 23:265101CrossRefPubMedGoogle Scholar
  29. 29.
    Lo YL, Liu Y, Tsai JC et al (2013) Overcoming multidrug resistance using liposomal epirubicin and antisense oligonucleotides targeting pump and nonpump resistances in vitro and in vivo. Biomed Pharmacother 67:261–267CrossRefPubMedGoogle Scholar
  30. 30.
    Costa PM, Cardoso AL, Mendonca LS et al (2013) Tumor-targeted Chlorotoxin coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a Promisingsystem for glioblastoma treatment. Mol Ther Nucleic Acids 2, e100CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Costa PM, Cardoso AL, Custodia C et al (2015) MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: A new multimodal gene therapy approach for glioblastoma. J Control Release 207:31–39CrossRefPubMedGoogle Scholar
  32. 32.
    Kogure K, Akita H, Yamada Y et al (2008) Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv Drug Deliv Rev 60:559–571CrossRefPubMedGoogle Scholar
  33. 33.
    Mikhalin AA, Evdokimov NM, Frolova LV et al (2014) Lipophilic prodrug conjugates allow facile and rapid synthesis of high-loading capacity liposomes without the need for post-assembly purification. J Liposome Res 1–29Google Scholar
  34. 34.
    Boado RJ (2007) Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res 24:1772–1787CrossRefPubMedGoogle Scholar
  35. 35.
    Collet G, Grillon C, Nadim M et al (2013) Trojan horse at cellular level for tumor gene therapies. Gene 525:208–216CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang Y, Zhang YF, Bryant J et al (2004) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10:3667–3677CrossRefPubMedGoogle Scholar
  37. 37.
    Asai T (2012) Nanoparticle-mediated delivery of anticancer agents to tumor angiogenic vessels. Biol Pharm Bull 35:1855–1861CrossRefPubMedGoogle Scholar
  38. 38.
    Sun J, Zheng J, Ling KH et al (2012) Preventing intimal thickening of vein grafts in vein artery bypass using STAT-3 siRNA. J Transl Med 10:2CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Torchilin V (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71:431–444CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 8: 1509–1528CrossRefGoogle Scholar
  41. 41.
    Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9:E128–E147CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li XT, Ju RJ, Li XY et al (2014) Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells. Oncotarget 5:6497CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lo YL, Liu Y (2014) Reversing multidrug resistance in Caco-2 by Silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides. PLoS One 9, e90180CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Beloglazova NV, Goryacheva IY, Shmelin PS (2015) Preparation and characterization of stable phospholipid–silica nanostructures loaded with quantum dots. J Mater Chem B 3:180–183CrossRefGoogle Scholar
  45. 45.
    Juliano R, Stamp D (1975) The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys ResCommun 63:651–658CrossRefGoogle Scholar
  46. 46.
    Poste G, Bucana C, Raz A et al (1982) Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery. Cancer Res 42:1412–1422PubMedGoogle Scholar
  47. 47.
    Yamada Y, Furukawa R, Yasuzaki Y et al (2011) Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol Ther 19:1449–1456CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Leonetti C, Scarsella M, Semple SC et al (2004) In vivo administration of liposomal vincristine sensitizes drug-resistant human solid tumors. Int J Cancer 110:767–774CrossRefPubMedGoogle Scholar
  49. 49.
    Wang X, Song Y, Su Y et al. (2015) Are PEGylated liposomes better than conventional liposomes? A special case for vincristine. Drug Deliv 1–9.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Materials Science, Graduate School of Pure and Applied SciencesTsukuba UniversityTsukubaJapan
  2. 2.Department of BiochemistryCentral Food Technological Research InstituteMysoreIndia

Personalised recommendations