Targeting Cancer Cell Death with Small Molecule Agents for Potential Therapeutics

Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Time has come to switch from morphological to molecular definitions of cell death subroutines, due to substantial progress in biochemical and genetic exploration. Currently, cell death subroutines are defined by a series of precise, measurable biochemical features; these include apoptosis, autophagic cell death and necroptosis. Accumulating evidence has gradually revealed the core molecular machinery of cell death in carcinogenesis; the intricate relationships between cell death subroutines and cancer, however, still need to be clarified. Cancer drug discovery, in particular, has benefitted significantly from a rapid progress in utilization of several small molecule compounds to target different cell death modularity. Thus, this review provides a comprehensive summary of the interrelationships between the cell death subroutines (e.g., apoptosis and autophagic cell death) and relevant anticancer small molecule compounds (e.g., Oridonin and Rapamycin). Moreover, these interconnections between different cell death subroutines may be integrated into the entire cell death network. This would be regarded as a potential cancer target for more small molecule drug discovery. Taken together, these findings may provide new and emerging clues that fill the gap between cell death subroutines and small molecule drugs for future cancer therapy.

Key words

Apoptosis Autophagy Necroptosis Small molecule compounds Cancer therapy 



This work was supported by grants from the Key Projects of the National Science and Technology Pillar Program (No. 2012BAI30B02), National Natural Science Foundation of China (Nos. U1170302, 81402496, 81260628, 81303270 and 81172374).


  1. 1.
    Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G (2011) Cell death assays for drug discovery. Nat Rev Drug Discov 10(3):221–237CrossRefPubMedGoogle Scholar
  2. 2.
    Huang P, Oliff A (2001) Signaling pathways in apoptosis as potential targets for cancer therapy. Trends Cell Biol 11(8):343–348CrossRefPubMedGoogle Scholar
  3. 3.
    Kim R (2004) Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103(8):1551–1560CrossRefGoogle Scholar
  4. 4.
    Jäättelä M (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23(16):2746–2756CrossRefPubMedGoogle Scholar
  5. 5.
    Leist M, Jäättelä M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2(8):589–598CrossRefPubMedGoogle Scholar
  6. 6.
    Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147CrossRefPubMedGoogle Scholar
  7. 7.
    Danial NN, Korsmeyer SJ (2004) Cell Death: Critical Control Points. Cell 116(2):205–219CrossRefPubMedGoogle Scholar
  8. 8.
    Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108(2):153–164CrossRefPubMedGoogle Scholar
  9. 9.
    Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45(6):487–498CrossRefPubMedGoogle Scholar
  10. 10.
    Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811CrossRefPubMedGoogle Scholar
  11. 11.
    Sayers TJ (2011) Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother 60(8):1173–1180CrossRefPubMedGoogle Scholar
  12. 12.
    Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8(8):808–815PubMedGoogle Scholar
  13. 13.
    Fulda S (2015) Targeting extrinsic apoptosis in cancer: Challenges and opportunities. Semin Cell Dev Biol 39:20–25CrossRefPubMedGoogle Scholar
  14. 14.
    Holland PM (2014) Death receptor agonist therapies for cancer, which is the right TRAIL? Cytokine Growth Factor Rev 25(2):185–193CrossRefPubMedGoogle Scholar
  15. 15.
    Nakanishi C, Toi M (2005) Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5(4):297–309CrossRefPubMedGoogle Scholar
  16. 16.
    Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhao L, Gu LJ, Wang ZY (1989) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Haematol Blood Transfus 32:88–96PubMedGoogle Scholar
  17. 17.
    Ralph SJ, Neuzil J (2009) Mitochondria as targets for cancer therapy. Mol Nutr Food Res 53(1):9–28CrossRefPubMedGoogle Scholar
  18. 18.
    Hockenbery DM (2010) Targeting mitochondria for cancer therapy. Environ Mol Mutagen 51(5):476–489CrossRefPubMedGoogle Scholar
  19. 19.
    Akgul C (2009) Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci 66(8):1326–1336CrossRefPubMedGoogle Scholar
  20. 20.
    Vangestel C, Van de Wiele C, Mees G, Peeters M (2009) Forcing cancer cells to commit suicide. Cancer Biother Radiopharm 24(4):395–407CrossRefPubMedGoogle Scholar
  21. 21.
    Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937CrossRefPubMedGoogle Scholar
  22. 22.
    Liu B, Wen X, Cheng Y (2013) Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer. Cell Death Dis 4, e892CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu B, Cheng Y, Liu Q, Bao JK, Yang JM (2010) Autophagic pathways as new targets for cancer drug development. Acta Pharmacol Sin 31(9):1154–1164CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R, Kroemer G (2009) Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 16(1):87–93CrossRefPubMedGoogle Scholar
  25. 25.
    Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hartford CM, Ratain MJ (2007) Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther 82(4):381–388CrossRefPubMedGoogle Scholar
  27. 27.
    Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS (2009) mTOR Mediated Anti-Cancer Drug Discovery. Drug Discov Today Ther Strateg 6(2):47–55CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 4(11):691–699CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    McKnight NC, Zhenyu Y (2013) Beclin 1, an Essential Component and Master Regulator of PI3K-III in Health and Disease. Curr Pathobiol Rep 1(4):231–238CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fu LL, Cheng Y, Liu B (2013) Beclin-1: Autophagic regulator and therapeutic target in cancer. Int J Biochem Cell Biol 45(5):921–924CrossRefPubMedGoogle Scholar
  32. 32.
    van Veelen W, Korsse SE, van de Laar L, Peppelenbosch MP (2011) The long and winding road to rational treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling. Oncogene 30(20):2289–2303CrossRefPubMedGoogle Scholar
  33. 33.
    Ryan KM (2011) p53 and autophagy in cancer: guardian of the genome meets guardian of the proteome. Eur J Cancer 47(1):44–50CrossRefPubMedGoogle Scholar
  34. 34.
    Sui X, Jin L, Huang X, Geng S, He C, Hu X (2011) p53 signaling and autophagy in cancer: a revolutionary strategy could be developed for cancer treatment. Autophagy 7(6):565–571CrossRefPubMedGoogle Scholar
  35. 35.
    Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32(1):37–43CrossRefPubMedGoogle Scholar
  36. 36.
    Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, Janke LJ, Kelliher MA, Kanneganti TD, Green DR (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5):1189–1202CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321CrossRefPubMedGoogle Scholar
  38. 38.
    Najjar M, Suebsuwong C, Ray SS, Thapa RJ, Maki JL, Nogusa S, Shah S, Saleh D, Gough PJ, Bertin J, Yuan J, Balachandran S, Cuny GD, Degterev A (2015) Structure Guided Design of Potent and Selective Ponatinib-Based Hybrid Inhibitors for RIPK1. Cell Rep 10(11):1850–1860, pii:S2211-1247(15)00210-7CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yu X, Deng Q, Li W, Xiao L, Luo X, Liu X, Yang L, Peng S, Ding Z, Feng T, Zhou J, Fan J, Bode AM, Dong Z, Liu J, Cao Y (2015) Neoalbaconol induces cell death through necroptosis by regulating RIPK-dependent autocrine TNFα and ROS production. Oncotarget 6(4):1995–2008CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Qiu J, Xiao J, Han C, Li N, Shen X, Jiang H, Cao X (2010) Potentiation of tumor necrosis factor-alpha-induced tumor cell apoptosis by a small molecule inhibitor for anti-apoptotic protein hPEBP4. J Biol Chem 285(16):12241–12247CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J, Chen X (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11(8):1672–1682CrossRefPubMedGoogle Scholar
  42. 42.
    Nishida K, Yamaguchi O, Otsu K (2008) Crosstalk between autophagy and apoptosis in heart disease. Circ Res 103(4):343–351CrossRefPubMedGoogle Scholar
  43. 43.
    Solarewicz-Madejek K, Basinski TM, Crameri R, Akdis M, Akkaya A, Blaser K, Rabe KF, Akdis CA, Jutel M (2009) T cells and eosinophils in bronchial smooth muscle cell death in asthma. Clin Exp Allergy 39(6):845–855CrossRefPubMedGoogle Scholar
  44. 44.
    Bialik S, Kimchi A (2006) The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75:189–210CrossRefPubMedGoogle Scholar
  45. 45.
    Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833(12):3448–3459CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengduChina
  2. 2.College of PharmacyXinjiang Medical UniversityUrumqiChina

Personalised recommendations