Advertisement

Novel Electrochemical Biosensor for Apoptosis Evaluation

Protocol
  • 693 Downloads
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Apoptosis evaluation is one of the most important tasks of toxicology. By using a peptide as the recognition element, and assembling apoptotic cells on a solid surface, we have established a novel electrochemical method for the detection of apoptosis levels. Such a peptide-based electrochemical biosensor is simple, cost-effective, convenient, and sensitive. Since the results obtained are well in line with other standard methods, this method holds a great potential towards the analysis of apoptosis and its applications. In this chapter, we introduce a general overview of this technical approach for detecting apoptotic cells. We discuss its advantages over the ordinary methods. We also provide practical guidelines for designing studies, and summarize the step-by-step protocols used in our lab for sample preparation, electrode modification, and accurate electrochemical quantification of apoptotic cells.

Key words

Analytical chemistry Apoptosis Electrochemical analysis Phosphatidylserine Peptide Differential pulse voltammetry Electrochemical impedance spectroscopy Cyclic voltammetry 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21307154 and 31400847) and the National Key Instrument Developing Project of China (Grant No. ZDYZ2013-1).

Glossary

CV

Cyclic voltammetry

DPV

Differential pulse voltammetry

ECL

Electrochemiluminescent

EDTA

Ethylenediaminetetraacetic acid

EIS

Electrochemical impedance spectroscopy

MCH

Mercaptohexanol

PBS

Phosphate buffered saline

PI

Propidium iodide

TCEP

Tris(2-carboxyethyl)phosphinehydro-chloride

References

  1. 1.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241CrossRefPubMedGoogle Scholar
  2. 2.
    Boulianne B, Rojas OL, Haddad D, Zaheen A, Kapelnikov A, Nguyen T, Li CL, Hakem R, Gommerman JL, Martin A (2013) AID and caspase 8 shape the germinal center response through apoptosis. J Immunol 191: 5840–5847CrossRefPubMedGoogle Scholar
  3. 3.
    Areti A, Yerra VG, Naidu V, Kumar A (2014) Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol 2:289–295CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Choong G, Liu Y, Templeton DM (2014) Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact 211:54–65CrossRefPubMedGoogle Scholar
  5. 5.
    Vaux DL (2002) Apoptosis and toxicology—what relevance? Toxicology 181–182:3–7CrossRefPubMedGoogle Scholar
  6. 6.
    El-Naga RN (2014) Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: impact on NOX-1, inflammation and apoptosis. Toxicol Appl Pharm 274:87–95CrossRefGoogle Scholar
  7. 7.
    Seco-Rovira V, Beltran-Frutos E, Ferrer C, Saez FJ, Madrid JF, Pastor LM (2014) The death of sertoli cells and the capacity to phagocytize elongated spermatids during testicular regression due to short photoperiod in Syrian hamster (Mesocricetus auratus). Biol Reprod 90:107CrossRefPubMedGoogle Scholar
  8. 8.
    Vanden Berghe T, Grootjans S, Goossens V, Dondelinger Y, Krysko DV, Takahashi N, Vandenabeele P (2013) Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 61:117–129CrossRefPubMedGoogle Scholar
  9. 9.
    Feng H, Yin SH, Tang AZ, Cai HW, Chen P, Tan SH, Xie LH (2010) Caspase-3 activation in the guinea pig cochlea exposed to salicylate. Neurosci Lett 479:34–39CrossRefPubMedGoogle Scholar
  10. 10.
    Liu J, Yao YZ, Ding HF, Chen RA (2014) Oxymatrine triggers apoptosis by regulating Bcl-2 family proteins and activating caspase-3/caspase-9 pathway in human leukemia HL-60 cells. Tumor Biol 35:5409–5415CrossRefGoogle Scholar
  11. 11.
    Mendez J, Cruz MM, Delgado Y, Figueroa CM, Orellano EA, Morales M, Monteagudo A, Griebenow K (2014) Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells. Mol Pharm 11:102–111CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gorla M, Sepuri NBV (2014) Perturbation of apoptosis upon binding of tRNA to the heme domain of cytochrome c. Apoptosis 19: 259–268CrossRefPubMedGoogle Scholar
  13. 13.
    Pan Y, Shan W, Fang H, Guo M, Nie Z, Huang Y, Yao S (2014) Sensitive and visible detection of apoptotic cells on Annexin-V modified substrate using aminophenylboronic acid modified gold nanoparticles (APBA-GNPs) labeling. Biosens Bioelectron 52:62–68CrossRefPubMedGoogle Scholar
  14. 14.
    Li XH, Link JM, Stekhova S, Yagle KJ, Smito C, Krohn KA, Tait JF (2008) Site-specific labeling of annexin V with F-18 for apoptosis imaging. Bioconjug Chem 19:1684–1688CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dong HP, Holth A, Ruud MG, Emilsen E, Risberg B, Davidson B (2011) Measurement of apoptosis in cytological specimens by flow cytometry: comparison of Annexin V, caspase cleavage and dUTP incorporation assays. Cytopathology 22:365–372CrossRefPubMedGoogle Scholar
  16. 16.
    Burtea C, Laurent S, Lancelot E, Ballet S, Murariu O, Rousseaux O, Port M, Vander Elst L, Corot C, Muller RN (2009) Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques. Mol Pharm 6:1903–1919CrossRefPubMedGoogle Scholar
  17. 17.
    Qiu Y, Yi S, Kaifer AE (2011) Encapsulation of tetrathiafulvalene inside a dimeric molecular capsule. Org Lett 13:1770–1773CrossRefPubMedGoogle Scholar
  18. 18.
    Miao P, Ning L, Li X (2013) Gold nanoparticles and cleavage-based dual signal amplification for ultrasensitive detection of silver ions. Anal Chem 85:7966–7970CrossRefPubMedGoogle Scholar
  19. 19.
    Miodek A, Castillo G, Hianik T, Korri-Youssoufi H (2013) Electrochemical aptasensor of human cellular prion based on multiwalled carbon nanotubes modified with dendrimers: a platform for connecting redox markers and aptamers. Anal Chem 85:7704–7712CrossRefPubMedGoogle Scholar
  20. 20.
    Yue QL, Xiong SQ, Cai DQ, Wu ZY, Zhang X (2014) Facile and quantitative electrochemical detection of yeast cell apoptosis. Sci Rep 4:4373PubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu T, Zhu W, Yang X, Chen L, Yang RW, Hua ZC, Li GX (2009) Detection of apoptosis based on the interaction between Annexin V and phosphatidylserine. Anal Chem 81:2410–2413CrossRefPubMedGoogle Scholar
  22. 22.
    Cao JT, Zhu YD, Rana RK, Zhu JJ (2014) Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells. Biosens Bioelectron 51:97–102CrossRefPubMedGoogle Scholar
  23. 23.
    Xiao H, Liu L, Meng FB, Huang JY, Li GX (2008) Electrochemical approach to detect apoptosis. Anal Chem 80:5272–5275CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang JJ, Zheng TT, Cheng FF, Zhu JJ (2011) Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels. Chem Commun 47:1178–1180CrossRefGoogle Scholar
  25. 25.
    Wen QQ, Zhang X, Cai J, Yang PH (2014) A novel strategy for real-time and in situ detection of cytochrome c and caspase-9 in Hela cells during apoptosis. Analyst 139:2499–2506CrossRefPubMedGoogle Scholar
  26. 26.
    Wu YF, Zhou H, Wei W, Hua X, Wang LX, Zhou ZX, Liu SQ (2012) Signal amplification cytosensor for evaluation of drug-induced cancer cell apoptosis. Anal Chem 84:1894–1899CrossRefPubMedGoogle Scholar
  27. 27.
    Tong CY, Shi BX, Xiao XJ, Liao HD, Zheng YQ, Shen GL, Tang DY, Liu XM (2009) An annexin V-based biosensor for quantitatively detecting early apoptotic cells. Biosens Bioelectron 24:1777–1782CrossRefPubMedGoogle Scholar
  28. 28.
    Miao P, Yin J, Ning LM, Li XX (2014) Peptide-based electrochemical approach for apoptosis evaluation. Biosens Bioelectron 62:97–101CrossRefPubMedGoogle Scholar
  29. 29.
    Miao P, Ning LM, Li XX, Li PF, Li GX (2012) Electrochemical strategy for sensing protein phosphorylation. Bioconjug Chem 23: 141–145CrossRefPubMedGoogle Scholar
  30. 30.
    Miao P, Wang BD, Han K, Tang YG (2014) Electrochemical impedance spectroscopy study of proteolysis using unmodified gold nanoparticles. Electrochem Commun 47:21–24CrossRefGoogle Scholar
  31. 31.
    Miao P, Liu L, Li Y, Li GX (2009) A novel electrochemical method to detect mercury (II) ions. Electrochem Commun 11:1904–1907CrossRefGoogle Scholar
  32. 32.
    Miao P, Liu L, Nie YJ, Li GX (2009) An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides. Biosens Bioelectron 24:3347–3351CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou SW, Zheng TT, Chen YF, Zhang JJ, Li LT, Lu F, Zhti JJ (2014) Toward therapeutic effects evaluation of chronic myeloid leukemia drug: electrochemical platform for caspase-3 activity sensing. Biosens Bioelectron 61: 648–654CrossRefPubMedGoogle Scholar
  34. 34.
    Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhouChina

Personalised recommendations