Skip to main content

Mesenchymal Stem Cells in Kidney Repair

  • Protocol
  • First Online:
Book cover Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

Every year 13.3 million people suffer acute kidney injury (AKI), which is associated with a high risk of death or development of long-term chronic kidney disease (CKD) in a substantial percentage of patients besides other organ dysfunctions. To date, the mortality rate per year for AKI exceeds 50 % at least in patients requiring early renal replacement therapy and is higher than the mortality for breast and prostate cancer, heart failure and diabetes combined.

Until now, no effective treatments able to accelerate renal recovery and improve survival post AKI have been developed. In search of innovative and effective strategies to foster the limited regeneration capacity of the kidney, several studies have evaluated the ability of mesenchymal stem cells (MSCs) of different origin as an attractive therapeutic tool. The results obtained in several models of AKI and CKD document that MSCs have therapeutic potential in repair of renal injury, preserving renal function and structure thus prolonging animal survival through differentiation-independent pathways. In this chapter, we have summarized the mechanisms underlying the regenerative processes triggered by MSC treatment, essentially due to their paracrine activity. The capacity of MSC to migrate to the site of injury and to secrete a pool of growth factors and cytokines with anti-inflammatory, mitogenic, and immunomodulatory effects is described. New modalities of cell-to-cell communication via the release of microvesicles and exosomes by MSCs to injured renal cells will also be discussed. The translation of basic experimental data on MSC biology into effective care is still limited to preliminary phase I clinical trials and further studies are needed to definitively assess the efficacy of MSC-based therapy in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor PL, Barker RA, Blume KG et al (2010) Patients beware: commercialized stem cell treatments on the web. Cell Stem Cell 7:43–49

    Article  CAS  PubMed  Google Scholar 

  2. Daley GQ (2012) The promise and perils of stem cell therapeutics. Cell Stem Cell 10:740–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ranganath SH, Levy O, Inamdar MS et al (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosenzweig A (2006) Cardiac cell therapy-mixed results from mixed cells. N Engl J Med 355:1274–1277

    Article  CAS  PubMed  Google Scholar 

  5. Nowbar AN, Mielewczik M, Karavassilis M et al (2014) Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ 348:g2688

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weissman I (2012) Stem cell therapies could change medicine… if they get the chance. Cell Stem Cell 10:663–665

    Article  CAS  PubMed  Google Scholar 

  7. Poulsom R, Forbes SJ, Hodivala-Dilke K et al (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235

    Article  CAS  PubMed  Google Scholar 

  8. Ito T, Suzuki A, Imai E et al (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12:2625–2635

    CAS  PubMed  Google Scholar 

  9. Li B, Morioka T, Uchiyama M et al (2006) Bone marrow cell infusion ameliorates progressive glomerulosclerosis in an experimental rat model. Kidney Int 69:323–330

    Article  CAS  PubMed  Google Scholar 

  10. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  11. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  12. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bianco P, Cao X, Frenette PS et al (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  PubMed  Google Scholar 

  15. Edwards RG, Hollands P (2007) Will stem cells in cord blood, amniotic fluid, bone marrow and peripheral blood soon be unnecessary in transplantation? Reprod Biomed Online 14:396–401

    Article  PubMed  Google Scholar 

  16. Panepucci RA, Siufi JL, Silva WA Jr et al (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22:1263–1278

    Article  CAS  PubMed  Google Scholar 

  17. Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  18. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teixeira FG, Carvalho MM, Sousa N et al (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70:3871–3882

    Article  CAS  PubMed  Google Scholar 

  20. Wagner J, Kean T, Young R et al (2009) Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol 20:531–536

    Article  CAS  PubMed  Google Scholar 

  21. Kupcova Skalnikova H (2013) Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 95:2196–2211

    Article  CAS  PubMed  Google Scholar 

  22. Drago D, Cossetti C, Iraci N et al (2013) The stem cell secretome and its role in brain repair. Biochimie 95:2271–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bronckaers A, Hilkens P, Martens W et al (2014) Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther 143:181–196

    Article  CAS  PubMed  Google Scholar 

  24. Abumaree M, Al Jumah M, Pace RA et al (2012) Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev 8:375–392

    Article  CAS  PubMed  Google Scholar 

  25. Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    Article  PubMed  Google Scholar 

  26. Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  27. Casiraghi F, Remuzzi G, Perico N (2014) Mesenchymal stromal cells to promote kidney transplantation tolerance. Curr Opin Organ Transplant 19:47–53

    Article  CAS  PubMed  Google Scholar 

  28. English K (2013) Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 91:19–26

    Article  CAS  PubMed  Google Scholar 

  29. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tomasoni S, Longaretti L, Rota C et al (2013) Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 22:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ratajczak J, Wysoczynski M, Hayek F et al (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    Article  CAS  PubMed  Google Scholar 

  33. Camussi G, Deregibus MC, Bruno S et al (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    Article  CAS  PubMed  Google Scholar 

  34. Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:1503–1520

    Article  CAS  PubMed  Google Scholar 

  35. Coca SG, Yusuf B, Shlipak MG et al (2009) Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 53:961–973

    Article  PubMed  PubMed Central  Google Scholar 

  36. Star RA (1998) Treatment of acute renal failure. Kidney Int 54:1817–1831

    Article  CAS  PubMed  Google Scholar 

  37. Grino JM (1994) BN 52021: a platelet activating factor antagonist for preventing post- transplant renal failure. A double-blind, randomized study. The BN 52021 Study Group in Renal Transplantation. Ann Intern Med 121:345–347

    Article  CAS  PubMed  Google Scholar 

  38. Haug CE, Colvin RB, Delmonico FL et al (1993) A phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients. Transplantation 55:766–772

    Article  CAS  PubMed  Google Scholar 

  39. Bonventre JV (2003) Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 14(Suppl 1):S55–S61

    Article  PubMed  Google Scholar 

  40. Lameire N, Van Biesen W, Vanholder R (2008) Acute kidney injury. Lancet 372:1863–1865

    Article  PubMed  Google Scholar 

  41. Benigni A, Morigi M, Remuzzi G (2010) Kidney regeneration. Lancet 375:1310–1317

    Article  CAS  PubMed  Google Scholar 

  42. Aejaz HM, Aleem AK, Parveen N et al (2007) Stem cell therapy-present status. Transplant Proc 39:694–699

    Article  CAS  PubMed  Google Scholar 

  43. Daley GQ, Scadden DT (2008) Prospects for stem cell-based therapy. Cell 132:544–548

    Article  CAS  PubMed  Google Scholar 

  44. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  CAS  PubMed  Google Scholar 

  45. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856

    Article  CAS  PubMed  Google Scholar 

  46. Little MH (2006) Regrow or repair: potential regenerative therapies for the kidney. J Am Soc Nephrol 17:2390–2401

    Article  PubMed  Google Scholar 

  47. Cantley LG (2005) Adult stem cells in the repair of the injured renal tubule. Nat Clin Pract Nephrol 1:22–32

    Article  CAS  PubMed  Google Scholar 

  48. Morigi M, Benigni A, Remuzzi G et al (2006) The regenerative potential of stem cells in acute renal failure. Cell Transplant 15(Suppl 1):S111–S117

    Article  PubMed  Google Scholar 

  49. Morigi M, Imberti B, Zoja C et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  PubMed  Google Scholar 

  50. Herrera MB, Bussolati B, Bruno S et al (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14:1035–1041

    PubMed  Google Scholar 

  51. Togel F, Hu Z, Weiss K et al (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289:F31–F42

    Article  PubMed  Google Scholar 

  52. Morigi M, Introna M, Imberti B et al (2008) Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26:2075–2082

    Article  CAS  PubMed  Google Scholar 

  53. Morigi M, Rota C, Montemurro T et al (2010) Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells 28:513–522

    CAS  PubMed  Google Scholar 

  54. Rota C, Imberti B, Pozzobon M et al (2012) Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev 21:1911–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim JH, Park DJ, Yun JC et al (2012) Human adipose tissue-derived mesenchymal stem cells protect kidneys from cisplatin nephrotoxicity in rats. Am J Physiol Renal Physiol 302:F1141–F1150

    Article  CAS  PubMed  Google Scholar 

  56. Katsuno T, Ozaki T, Saka Y et al (2013) Low serum cultured adipose tissue-derived stromal cells ameliorate acute kidney injury in rats. Cell Transplant 22:287–297

    Article  PubMed  Google Scholar 

  57. Flynn A, Barry F, O'Brien T (2007) UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy 9:717–726

    Article  CAS  PubMed  Google Scholar 

  58. Sanchez-Ramos J (2006) Stem cells from umbilical cord blood. Semin Reprod Med 24:358–369

    Article  CAS  PubMed  Google Scholar 

  59. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  CAS  PubMed  Google Scholar 

  60. Lee OK, Kuo TK, Chen WM et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  CAS  PubMed  Google Scholar 

  61. Seres KB, Hollands P (2010) Cord blood: the future of regenerative medicine? Reprod Biomed Online 20:98–102

    Article  CAS  PubMed  Google Scholar 

  62. Du T, Cheng J, Zhong L et al (2012) The alleviation of acute and chronic kidney injury by human Wharton’s jelly-derived mesenchymal stromal cells triggered by ischemia-reperfusion injury via an endocrine mechanism. Cytotherapy 14:1215–1227

    Article  CAS  PubMed  Google Scholar 

  63. Fang TC, Pang CY, Chiu SC et al (2012) Renoprotective effect of human umbilical cord-derived mesenchymal stem cells in immunodeficient mice suffering from acute kidney injury. PLoS One 7, e46504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. De Coppi P, Bartsch G Jr, Siddiqui MM et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    Article  PubMed  Google Scholar 

  65. Gupta S, Verfaillie C, Chmielewski D et al (2002) A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int 62:1285–1290

    Article  PubMed  Google Scholar 

  66. Bi B, Schmitt R, Israilova M et al (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496

    Article  PubMed  Google Scholar 

  67. Togel F, Weiss K, Yang Y et al (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635

    Article  CAS  PubMed  Google Scholar 

  68. Hirschberg R, Ding H (1998) Mechanisms of insulin-like growth factor-I-induced accelerated recovery in experimental ischemic acute renal failure. Miner Electrolyte Metab 24:211–219

    Article  CAS  PubMed  Google Scholar 

  69. Imberti B, Morigi M, Tomasoni S et al (2007) Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 18:2921–2928

    Article  CAS  PubMed  Google Scholar 

  70. Togel F, Zhang P, Hu Z et al (2009) VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury. J Cell Mol Med 13:2109–2114

    Article  PubMed  Google Scholar 

  71. Hagiwara M, Shen B, Chao L et al (2008) Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther 19:807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mias C, Trouche E, Seguelas MH et al (2008) Ex vivo pretreatment with melatonin improves survival, proangiogenic/mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney. Stem Cells 26:1749–1757

    Article  CAS  PubMed  Google Scholar 

  73. Xinaris C, Morigi M, Benedetti V et al (2013) A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant 22:423–436

    Article  CAS  PubMed  Google Scholar 

  74. Bruno S, Grange C, Deregibus MC et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Collino F, Deregibus MC, Bruno S et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5, e11803

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lindoso RS, Collino F, Bruno S et al (2014) Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury. Stem Cells Dev 23(15):1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kunter U, Rong S, Moeller MJ et al (2011) Mesenchymal stem cells as a therapeutic approach to glomerular diseases: benefits and risks. Kidney Int Suppl 1:68–73

    Article  Google Scholar 

  78. Ninichuk V, Gross O, Segerer S et al (2006) Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 70:121–129

    Article  CAS  PubMed  Google Scholar 

  79. Guillot PV, Cook HT, Pusey CD et al (2008) Transplantation of human fetal mesenchymal stem cells improves glomerulopathy in a collagen type I alpha 2-deficient mouse. J Pathol 214:627–636

    Article  CAS  PubMed  Google Scholar 

  80. Choi S, Park M, Kim J et al (2009) The role of mesenchymal stem cells in the functional improvement of chronic renal failure. Stem Cells Dev 18:521–529

    Article  CAS  PubMed  Google Scholar 

  81. Cavaglieri RC, Martini D, Sogayar MC et al (2009) Mesenchymal stem cells delivered at the subcapsule of the kidney ameliorate renal disease in the rat remnant kidney model. Transplant Proc 41:947–951

    Article  CAS  PubMed  Google Scholar 

  82. Semedo P, Correa-Costa M, Antonio Cenedeze M et al (2009) Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27:3063–3073

    CAS  PubMed  Google Scholar 

  83. Kunter U, Rong S, Djuric Z et al (2006) Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17:2202–2212

    Article  CAS  PubMed  Google Scholar 

  84. Kunter U, Rong S, Boor P et al (2007) Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J Am Soc Nephrol 18:1754–1764

    Article  CAS  PubMed  Google Scholar 

  85. Sun L, Akiyama K, Zhang H et al (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27:1421–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zoja C, Garcia PB, Rota C et al (2012) Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. Am J Physiol Renal Physiol 303:F1370–F1381

    Article  CAS  PubMed  Google Scholar 

  87. Gooch A, Doty J, Flores J et al (2008) Initial report on a phase I clinical trial: prevention and treatment of post-operative acute kidney injury with allogeneic mesenchymal stem cell in patients who require on-pump cardiac surgery. Cell Ther Transplant [Online] 1:31–35

    Google Scholar 

  88. Togel FE, Westenfelder C (2010) Mesenchymal stem cells: a new therapeutic tool for AKI. Nat Rev Nephrol 6:179–183

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Manuela Passera and Antonella Piccinelli for their help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Morigi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Morigi, M., Rota, C., Remuzzi, G. (2016). Mesenchymal Stem Cells in Kidney Repair. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics