Unraveling Mesenchymal Stem Cells’ Dynamic Secretome Through Nontargeted Proteomics Profiling

  • Sandra I. Anjo
  • Ana S. Lourenço
  • Matilde N. Melo
  • Cátia Santa
  • Bruno ManadasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1416)


The modulatory and regenerative potential shown by the use of MSC secretomes has emphasized the importance of their proteomics profiling. Proteomic analysis, initially focused on the targeted analysis of some candidate proteins or the identification of the secreted proteins, has been changing to an untargeted profiling also based on the quantitative evaluation of the secreted proteins.

The study of the secretome can be accomplished through several different proteomics-based approaches; however this analysis must overcome one key challenge of secretome analysis: the low amount of secreted proteins and usually their high dilution.

In this chapter, a general workflow for the untargeted proteomic profile of MSC’s secretome is presented, in combination with a comprehensive description of the major techniques/procedures that can be used. Special focus is given to the main procedures to obtain the secreted proteins, from secretome concentration by ultrafiltration to protein precipitation. Lastly, different proteomics-based approaches are presented, emphasizing alternative digestion techniques and available mass spectrometry-based quantitative methods.

Key words

MSC secretome Quantitative proteomics Mass spectrometry 



This work was supported by Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-NEU/103728/2008, PTDC/NEU-NMC/0205/2012, PEst-C/SAU/LA0001/2013–2014, and UID/NEU/04539/2013) and co-financed by “COMPETE Programa Operacional Factores de Competitividade,” QREN; the European Union (FEDER – Fundo Europeu de Desenvolvimento Regional) and by The National Mass Spectrometry Network (RNEM) (REDE/1506/REM/2005). Sandra I. Anjo, Ana S. Lourenço, and Cátia Santa are supported by FCT PhD fellowships (SFRH/BD/81495/2011, SFRH/BD/78585/2011, and SFRH/BD/88419/2012).


  1. 1.
    Skalnikova H, Motlik J, Gadher SJ et al (2011) Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11:691–708CrossRefPubMedGoogle Scholar
  2. 2.
    Fraga JS, Silva NA, Lourenço AS et al (2013) Unveiling the effects of the secretome of mesenchymal progenitors from the umbilical cord in different neuronal cell populations. Biochimie 95:2297–2303CrossRefPubMedGoogle Scholar
  3. 3.
    Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A1023:317–320CrossRefGoogle Scholar
  4. 4.
    Isaacson T, Damasceno CM, Saravanan RS et al (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774CrossRefPubMedGoogle Scholar
  5. 5.
    Jafari M, Primo V, Smejkal GB et al (2012) Comparison of in-gel protein separation techniques commonly used for fractionation in mass spectrometry-based proteomic profiling. Electrophoresis 33:2516–2526CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vowinckel J, Capuano F, Campbell K et al (2014) The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics. F1000Res 2, doi: 10.12688/f1000research. 2-272.v2Google Scholar
  7. 7.
    Granvogl B, Ploscher M, Eichacker LA (2007) Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem 389:991–1002CrossRefPubMedGoogle Scholar
  8. 8.
    Switzar L, Giera M, Niessen WM (2013) Protein digestion: an overview of the available techniques and recent developments. J Proteome Res 12:1067–1077CrossRefPubMedGoogle Scholar
  9. 9.
    Lundby A, Olsen JV (2011) GeLCMS for in-depth protein characterization and advanced analysis of proteomes. Methods Mol Biol 753:143–155CrossRefPubMedGoogle Scholar
  10. 10.
    Carrette O, Burkhard PR, Sanchez JC et al (2006) State-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research. Nat Protoc 1:812–823CrossRefPubMedGoogle Scholar
  11. 11.
    Magdeldin S et al (2014) Basics and recent advances of two dimensional-polyacrylamide gel electrophoresis. Clin Proteomics 11:16CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rogowska-Wrzesinska A, Le Bihan MC, Thaysen-Andersen M et al (2013) 2D gels still have a niche in proteomics. J Proteomics 88:4–13CrossRefPubMedGoogle Scholar
  13. 13.
    Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685CrossRefPubMedGoogle Scholar
  14. 14.
    Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(O111):016717PubMedGoogle Scholar
  15. 15.
    Capelo JL, Carreira R, Diniz M et al (2009) Overview on modern approaches to speed up protein identification workflows relying on enzymatic cleavage and mass spectrometry-based techniques. Anal ChimActa 650:151–159CrossRefGoogle Scholar
  16. 16.
    Lopez-Ferrer D, Capelo JL, Vazquez J (2005) Ultrafast trypsin digestion of proteins by high intensity focused ultrasound. J Proteome Res 4:1569–1574CrossRefPubMedGoogle Scholar
  17. 17.
    Russell WK, Park ZY, Russell DH (2001) Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry. Anal Chem 73:2682–2685CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang N, Chen R, Young N et al (2007) Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS. Proteomics 7:484–493CrossRefPubMedGoogle Scholar
  19. 19.
    Blonder J, Chan KC, Issaq HJ et al (2006) Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS. Nat Protoc 1:2784–2790CrossRefPubMedGoogle Scholar
  20. 20.
    Jehmlich N, Golatowski C, Murr A et al (2014) Comparative evaluation of peptide desalting methods for salivary proteome analysis. Clin Chim Acta 434:16–20CrossRefPubMedGoogle Scholar
  21. 21.
    Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262CrossRefPubMedGoogle Scholar
  22. 22.
    Craft GE, Chen A, Nairn AC (2013) Recent advances in quantitative neuroproteomics. Methods 61:186–218CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Manadas B, English JA, Wynne KJ et al (2009) Comparative analysis of OFFGel, strong cation exchange with pH gradient, and RP at high pH for first-dimensional separation of peptides from a membrane-enriched protein fraction. Proteomics 9:5194–5198CrossRefPubMedGoogle Scholar
  24. 24.
    Manadas B, Mendes VM, English J et al (2010) Peptide fractionation in proteomics approaches. Expert Rev Proteomics 7:655–663CrossRefPubMedGoogle Scholar
  25. 25.
    Liu Y, Hüttenhain R, Surinova S et al (2013) Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics 13:1247–1256CrossRefPubMedGoogle Scholar
  26. 26.
    Marengo E, Robotti E, Bobba M (2008) 2D-PAGE maps analysis. Methods Mol Biol 428:291–325CrossRefPubMedGoogle Scholar
  27. 27.
    Carpentier SC, Panis B, Swennen R et al (2008) Finding the significant markers: statistical analysis of proteomic data. Methods Mol Biol 428:327–347CrossRefPubMedGoogle Scholar
  28. 28.
    Vitorino R, Guedes S, Manadas B et al (2012) Toward a standardized saliva proteome analysis methodology. J Proteomics 75:5140–5165CrossRefPubMedGoogle Scholar
  29. 29.
    Manadas BJ, Vougas K, Fountoulakis M et al (2006) Sample sonication after trichloroacetic acid precipitation increases protein recovery from cultured hippocampal neurons, and improves resolution and reproducibility in two-dimensional gel electrophoresis. Electrophoresis 27:1825–1831CrossRefPubMedGoogle Scholar
  30. 30.
    Nandakumar MP, Shen J, Raman B et al (2003) Solubilization of trichloroacetic acid (TCA) precipitated microbial proteins via NaOH for two-dimensional electrophoresis. J Proteome Res 2:89–93CrossRefPubMedGoogle Scholar
  31. 31.
    Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333CrossRefPubMedGoogle Scholar
  32. 32.
    Correia S, Vinhas R, Manadas B et al (2012) Comparative proteomic analysis of auxin-induced embryogenic and nonembryogenic tissues of the solanaceous tree Cyphomandra betacea (Tamarillo). J Proteome Res 11:1666–1675CrossRefPubMedGoogle Scholar
  33. 33.
    Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tang WH, Shilov IV, Seymour SL (2008) Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 7:3661–3667CrossRefPubMedGoogle Scholar
  35. 35.
    Sennels L, Bukowski-Wills JC, Rappsilber J (2009) Improved results in proteomics by use of local and peptide-class specific false discovery rates. BMC Bioinformatics 10:179CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Santos SD, Manadas B, Duarte CB et al (2010) Proteomic analysis of an interactome for long-form AMPA receptor subunits. J Proteome Res 9:1670–1682CrossRefPubMedGoogle Scholar
  37. 37.
    Collins BC, Gillet LC, Rosenberger G et al (2013) Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods 10:1246–1253CrossRefPubMedGoogle Scholar
  38. 38.
    Lambert JP, Ivosev G, Couzens AL et al (2013) Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat Methods 10:1239–1245CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Paulo JA, Kadiyala V, Brizard S et al (2013) Short gel, long gradient liquid chromatography tandem mass spectrometry to investigate the urine proteome of chronic pancreatitis. Open Proteomics J 6:1–13CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Anjo SI, Santa C, Manadas B (2014) Short GeLC-SWATH: a fast and reliable quantitative approach for proteomic screenings. Proteomics. doi: 10.1002/pmic.201400221 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sandra I. Anjo
    • 1
    • 2
  • Ana S. Lourenço
    • 2
    • 3
  • Matilde N. Melo
    • 1
  • Cátia Santa
    • 1
    • 4
  • Bruno Manadas
    • 1
    • 3
    Email author
  1. 1.CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal
  3. 3.Biocant – Biotechnology Innovation CenterCantanhedePortugal
  4. 4.Institute for Interdisciplinary ResearchUniversity of Coimbra (IIIUC)CoimbraPortugal

Personalised recommendations