Skip to main content

Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics

Part of the Methods in Molecular Biology book series (MIMB,volume 1415)

Abstract

In modern plant biology, progress is increasingly defined by the scientists’ ability to gather and analyze data sets of high volume and complexity, otherwise known as “big data”. Arguably, the largest increase in the volume of plant data sets over the last decade is a consequence of the application of the next-generation sequencing and mass-spectrometry technologies to the study of experimental model and crop plants. The increase in quantity and complexity of biological data brings challenges, mostly associated with data acquisition, processing, and sharing within the scientific community. Nonetheless, big data in plant science create unique opportunities in advancing our understanding of complex biological processes at a level of accuracy without precedence, and establish a base for the plant systems biology. In this chapter, we summarize the major drivers of big data in plant science and big data initiatives in life sciences with a focus on the scope and impact of iPlant, a representative cyberinfrastructure platform for plant science.

Key words

  • Big data
  • Genomics
  • Next-generation sequencing
  • Proteomics
  • Mass spectrometry
  • Databases
  • iPlant

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-3572-7_27
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-3572-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low‐temperature regulatory network. Plant J 82(2):193–207

    CAS  CrossRef  PubMed  Google Scholar 

  2. Beckwith EJ, Yanovsky MJ (2014) Circadian regulation of gene expression: at the crossroads of transcriptional and post-transcriptional regulatory networks. Curr Opin Genet Dev 27:35–42

    CAS  CrossRef  PubMed  Google Scholar 

  3. Taylor-Teeples M, Lin L, De Lucas M, Turco G, Toal T, Gaudinier A, Young N, Trabucco G, Veling M, Lamothe R (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536):571–575

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Krouk G, Lingeman J, Colon AM, Coruzzi G, Shasha D (2013) Gene regulatory networks in plants: learning causality from time and perturbation. Genome Biol 14(6):123

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Patel RV, Nahal HK, Breit R, Provart NJ (2012) BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. Plant J 71(6):1038–1050. doi:10.1111/j.1365-313X.2012.05055.x

    CAS  CrossRef  PubMed  Google Scholar 

  6. Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39(Suppl 1):D1114–D1117

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen C-Y, Chou A, Ienasescu H (2013) JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res gkt997

    Google Scholar 

  8. Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21(10):2568–2569

    CAS  CrossRef  PubMed  Google Scholar 

  9. Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E (2006) AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 140(3):818–829

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Yilmaz A, Nishiyama MY, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149(1):171–180

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59(1):191–203

    CAS  CrossRef  PubMed  Google Scholar 

  12. Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K (2012) Identification of cis-acting promoter elements in cold-and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19(1):37–49

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Chen Z-Y, Guo X-J, Chen Z-X, Chen W-Y, Liu D-C, Zheng Y-L, Liu Y-X, Wei Y-M, Wang J-R (2015) Genome-wide characterization of developmental stage-and tissue-specific transcription factors in wheat. BMC Genomics 16(1):125

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45(1):43–50

    CAS  CrossRef  PubMed  Google Scholar 

  15. Mochida K, Ha CV, Sulieman S, Dong NV, Tran LSP (2015) Databases of transcription factors in legumes. Biol Nitr Fix pp 817–822

    Google Scholar 

  16. Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, Van de Peer Y, Vandepoele K (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21(12):3718–3731

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y, Vandepoele K (2011) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol 158:590–600. doi:10.1104/pp.111.189514

    PubMed  PubMed Central  Google Scholar 

  18. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Rouard M, Guignon V, Walde C, Droc G, Dufayard J, Conte M (2011) GreenPhylDB: phylogenomic resources for comparative and functional genomics in plants. Nucleic Acids Res 39(Database Issue):D1095–D1102

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Conte MG, Gaillard S, Lanau N, Rouard M, Périn C (2008) GreenPhylDB: a database for plant comparative genomics. Nucleic Acids Res 36(Database issue):D991–D998. Epub 2007 Nov 5

    Google Scholar 

  21. Monaco MK, Stein J, Naithani S, Wei S, Dharmawardhana P, Kumari S, Amarasinghe V, Youens-Clark K, Thomason J, Preece J (2014) Gramene 2013: comparative plant genomics resources. Nucleic Acids Res 42(D1):D1193–D1199

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y (2005) The SOL Genomics Network. A comparative resource for Solanaceae biology and beyond. Plant Physiol 138(3):1310–1317

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H (2015) The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res 43(D1):D1036–D1041

    CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Matthews DE, Lazo GR, Anderson OD (2009) Plant and crop databases. In: Gustafson JP, Langridge P, Somers DJ (eds) Plant genomics, vol 513, Methods in molecular biology. Humana, New York, pp 243–262. doi:10.1007/978-1-59745-427-8_13

    CrossRef  Google Scholar 

  25. Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar S (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci 104(11):4730–4735

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Popescu SC, Snyder M, Dinesh-Kumar S (2007) Arabidopsis protein microarrays for the high-throughput identification of protein-protein interactions. Plant Signal Behav 2(5):416–420

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23(1):80–92

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Popescu SC, Popescu GV, Snyder M, Dinesh-Kumar SP (2009) Integrated analysis of co-expressed MAP kinase substrates in Arabidopsis thaliana. Plant Signal Behav 4(6):524–527

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Lee HY, Bowen CH, Popescu GV, Kang H-G, Kato N, Ma S, Dinesh-Kumar S, Snyder M, Popescu SC (2011) Arabidopsis RTNLB1 and RTNLB2 reticulon-like proteins regulate intracellular trafficking and activity of the FLS2 immune receptor. Plant Cell 23(9):3374–3391

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJ, Conrath U (2016) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhostresistance. New Phytol 209(1):294–306. doi:10.1111/nph.13582. Epub 2015 Aug 28

    Google Scholar 

  31. Dreze M, Carvunis A-R, Charloteaux B, Galli M, Pevzner SJ, Tasan M, Ahn Y-Y, Balumuri P, Barabási A-L, Bautista V (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607

    CrossRef  Google Scholar 

  32. Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Thelen JJ, Peck SC (2007) Quantitative proteomics in plants: choices in abundance. Plant Cell 19(11):3339–3346

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Elmore JM, Liu J, Smith B, Phinney B, Coaker G (2012) Quantitative proteomics reveals dynamic changes in the plasma membrane during Arabidopsis immune signaling. Mol Cell Proteomics 11(4):M111.014555

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Kim YJ, Lee HM, Wang Y, Wu J, Kim SG, Kang KY, Park KH, Kim YC, Choi IS, Agrawal GK (2013) Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method. Proteomics 13(14):2176–2179

    CAS  CrossRef  PubMed  Google Scholar 

  36. Boschetti E, Righetti PG (2014) Plant proteomics methods to reach low-abundance proteins, Plant proteomics. Springer, New York, pp 111–129

    Google Scholar 

  37. Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F (2015) Oxidative post-translational modifications of cysteine residues in plant signal transduction. J Exp Bot 66(10):2923–2934

    CAS  CrossRef  PubMed  Google Scholar 

  38. Takahashi D, Li B, Nakayama T, Kawamura Y, Uemura M (2014) Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS, Plant proteomics. Springer, New York, pp 481–498

    Google Scholar 

  39. Mann GW, Joshi HJ, Petzold CJ, Heazlewood JL (2013) Proteome coverage of the model plant Arabidopsis thaliana: implications for shotgun proteomic studies. J Proteome 79:195–199

    CAS  CrossRef  Google Scholar 

  40. Carapito C, Burel A, Guterl P, Walter A, Varrier F, Bertile F, Van Dorsselaer A (2014) MSDA, a proteomics software suite for in‐depth Mass Spectrometry Data Analysis using grid computing. Proteomics 14(9):1014–1019

    CAS  CrossRef  PubMed  Google Scholar 

  41. Slagel J, Mendoza L, Shteynberg D, Deutsch EW, Moritz RL (2015) Processing shotgun proteomics data on the Amazon Cloud with the Trans-Proteomic Pipeline. Mol Cell Proteomics 14(2):399–404

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Kelchtermans P, Bittremieux W, Grave K, Degroeve S, Ramon J, Laukens K, Valkenborg D, Barsnes H, Martens L (2014) Machine learning applications in proteomics research: How the past can boost the future. Proteomics 14(4–5):353–366

    CAS  CrossRef  PubMed  Google Scholar 

  43. del Toro N, Reisinger F, Foster JM, Contell J, Fabregat A, Safont PR, Hermjakob H, Vizcaíno JA (2014) PRIDE Proteomes: a condensed view of the plethora of public proteomics data available in the PRIDE repository. DILS 2014:21

    Google Scholar 

  44. Kusebauch U, Deutsch EW, Campbell DS, Sun Z, Farrah T, Moritz RL (2014) Using PeptideAtlas, SRMAtlas, and PASSEL: comprehensive resources for discovery and targeted proteomics. Curr Protoc Bioinform 46: 13.25. 11–13.25.28

    Google Scholar 

  45. Fenyö D, Beavis RC (2015) The GPMDB REST Interface. Bioinformatics 31(12):2056–2058

    CrossRef  PubMed  Google Scholar 

  46. Sun Q, Zybailov B, Majeran W, Friso G, Olinares PDB, van Wijk KJ (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37(Suppl 1):D969–D974

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Joshi HJ, Christiansen KM, Fitz J, Cao J, Lipzen A, Martin J, Smith-Moritz AM, Pennacchio LA, Schackwitz WS, Weigel D (2012) 1001 proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions. Bioinformatics 28(10):1303–1306

    CAS  CrossRef  PubMed  Google Scholar 

  48. Hirsch-Hoffmann M, Gruissem W, Baerenfaller K (2012) pep2pro: the high-throughput proteomics data processing, analysis, and visualization tool. Front Plant Sci 3:123

    CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Baerenfaller K, Hirsch-Hoffmann M, Svozil J, Hull R, Russenberger D, Bischof S, Lu Q, Gruissem W, Baginsky S (2011) pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana. Integr Biol 3(3):225–237

    CAS  CrossRef  Google Scholar 

  50. Sakata K, Komatsu S (2014) Plant Proteomics: From Genome Sequencing to Proteome Databases and Repositories. In: Jorrin-Novo JV, Komatsu S, Weckwerth W, Wienkoop S (eds) Plant proteomics, vol 1072, Methods in molecular biology. Humana, New York, pp 29–42. doi:10.1007/978-1-62703-631-3_3

    CrossRef  Google Scholar 

  51. Mohammed Y, Mostovenko E, Henneman AA, Marissen RJ, Deelder AM, Palmblad M (2012) Cloud parallel processing of tandem mass spectrometry based proteomics data. J Proteome Res 11(10):5101–5108

    CAS  CrossRef  PubMed  Google Scholar 

  52. Pratt B, Howbert JJ, Tasman NI, Nilsson EJ (2012) MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services. Bioinformatics 28(1):136–137. doi:10.1093/bioinformatics/btr615. Epub 2011 Nov 8

    Google Scholar 

  53. Keller A, Eng J, Zhang N, Xj L, Aebersold R (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1(1)

    Google Scholar 

  54. Muth T, Peters J, Blackburn J, Rapp E, Martens L (2013) ProteoCloud: a full-featured open source proteomics cloud computing pipeline. J Proteome 88:104–108

    CAS  CrossRef  Google Scholar 

  55. Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh MH, Baldock R, Barbiera G, Bardou P, Beck T, Blake A, Bonierbale M, Brookes AJ, Bucci G, Buetti I, Burge S, Cabau C, Carlson JW, Chelala C, Chrysostomou C, Cittaro D, Collin O, Cordova R, Cutts RJ, Dassi E, Genova AD, Djari A, Esposito A, Estrella H, Eyras E, Fernandez-Banet J, Forbes S, Free RC, Fujisawa T, Gadaleta E, Garcia-Manteiga JM, Goodstein D, Gray K, Guerra-Assunção JA, Haggarty B, Han D-J, Han BW, Harris T, Harshbarger J, Hastings RK, Hayes RD, Hoede C, Hu S, Hu Z-L, Hutchins L, Kan Z, Kawaji H, Keliet A, Kerhornou A, Kim S, Kinsella R, Klopp C, Kong L, Lawson D, Lazarevic D, Lee J-H, Letellier T, Li C-Y, Lio P, Liu C-J, Luo J, Maass A, Mariette J, Maurel T, Merella S, Mohamed AM, Moreews F, Nabihoudine I, Ndegwa N, Noirot C, Perez-Llamas C, Primig M, Quattrone A, Quesneville H, Rambaldi D, Reecy J, Riba M, Rosanoff S, Saddiq AA, Salas E, Sallou O, Shepherd R, Simon R, Sperling L, Spooner W, Staines DM, Steinbach D, Stone K, Stupka E, Teague JW, Dayem Ullah AZ, Wang J, Ware D, Wong-Erasmus M, Youens-Clark K, Zadissa A, Zhang S-J, Kasprzyk A (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43(W1):W589–W598

    CrossRef  PubMed  PubMed Central  Google Scholar 

  56. Paten B, Diekhans M, Druker BJ, Friend S, Guinney J, Gassner N, Guttman M, James Kent W, Mantey P, Margolin AA, Massie M, Novak AM, Nothaft F, Pachter L, Patterson D, Smuga-Otto M, Stuart JM, Van′t Veer L, Wold B, Haussler D (2015) The NIH BD2K center for big data in translational genomics. J Am Med Inform Assoc 22(6):1143–1147

    PubMed  Google Scholar 

  57. Sinha S, Song J, Weinshilboum R, Jongeneel V, Han J (2015) KnowEnG: a knowledge engine for genomics. J Am Med Inform Assoc 22(6):1115–1119

    PubMed  Google Scholar 

  58. Crosswell LC, Thornton JM (2012) ELIXIR: a distributed infrastructure for European biological data. Trends Biotechnol 30(5):241–242

    CAS  CrossRef  PubMed  Google Scholar 

  59. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, Matasci N, Wang L, Hanlon M, Lenards A et al (2011) The iPlant collaborative: cyberinfrastructure for plant biology. Front Plant Sci 2:34

    CrossRef  PubMed  PubMed Central  Google Scholar 

  60. Burleigh JG, Bansal MS, Eulenstein O, Hartmann S, Wehe A, Vision TJ (2011) Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. Syst Biol 60(2):117–125

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Matasci N, Hung L-H, Yan Z, Carpenter EJ, Wickett NJ, Mirarab S, Nguyen N, Warnow T, Ayyampalayam S, Barker M (2014) Data access for the 1,000 Plants (1KP) project. Gigascience 3(1):1–10

    CrossRef  Google Scholar 

  62. Ward R, Wan M, Schroeder W, Rajasekar A, de Torcy A, Russell T, Xu H, Moore R. The integrated Rule-Oriented Data System (iRODS 3.0) Micro-service Workbook. ISBN:9781466469129 DICE Foundation

    Google Scholar 

  63. Oliver SL, Lenards AJ, Barthelson RA, Merchant N, McKay SJ (2002) Using the iPlant Collaborative Discovery Environment, Current protocols in bioinformatics. John Wiley, Hoboken, NJ. doi:10.1002/0471250953.bi0122s42

    Google Scholar 

  64. Skidmore E, Kim S-j, Kuchimanchi S, Singaram S, Merchant N, Stanzione D iPlant atmosphere: a gateway to cloud infrastructure for the plant sciences. In: Proceedings of the 2011 ACM workshop on Gateway computing environments, 2011. ACM, pp 59–64

    Google Scholar 

  65. McKay SJ, Skidmore EJ, LaRose CJ, Mercer AW, Noutsos C (2013) Cloud computing with iPlant atmosphere. Curr Protoc Bioinform 9.15. 11–19.15. 20

    Google Scholar 

  66. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE (2015) Big Data: astronomical or genomical? PLoS Biol 13(7):e1002195

    CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Orchard S, Binz PA, Jones AR, Vizcaino JA, Deutsch EW, Hermjakob H (2013) Preparing to work with Big Data in proteomics–a report on the HUPO‐PSI spring workshop. Proteomics 13(20):2931–2937

    CAS  CrossRef  PubMed  Google Scholar 

  68. Pennisi E (2005) How will big pictures emerge from a sea of biological data? Science 309(5731):94

    CAS  CrossRef  PubMed  Google Scholar 

  69. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JI, Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  70. Karr JR, Takahashi K, Funahashi A (2015) The principles of whole-cell modeling. Curr Opin Microbiol 27:18–24

    CAS  CrossRef  PubMed  Google Scholar 

  71. Gonzalez N, Inzé D (2015) Molecular systems governing leaf growth: from genes to networks. J Exp Bot 66(4):1045–1054

    CAS  CrossRef  PubMed  Google Scholar 

  72. Westlake TJ, Ricci WA, Popescu GV, Popescu SC (2015) Dimerization and thiol sensitivity of the salicylic acid binding thimet oligopeptidases TOP1 and TOP2 define their functions in redox-sensitive cellular pathways. Front Plant Sci 6:327

    CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, de Reffye P (2014) Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc Natl Acad Sci 111(39):E4127–E4136

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (project IOS-1025642 to S.C.P.) and by CNCSIS-UEFISCDI (project PN-II-PT-PCCA-2011-3.1-1350 to G.V.P.). C.N. was supported by the iPlant Collaborative grant DBI-0735191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George V. Popescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Popescu, G.V., Noutsos, C., Popescu, S.C. (2016). Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Proteomics. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 1415. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3572-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3572-7_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3570-3

  • Online ISBN: 978-1-4939-3572-7

  • eBook Packages: Springer Protocols