Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low‐temperature regulatory network. Plant J 82(2):193–207
CAS
CrossRef
PubMed
Google Scholar
Beckwith EJ, Yanovsky MJ (2014) Circadian regulation of gene expression: at the crossroads of transcriptional and post-transcriptional regulatory networks. Curr Opin Genet Dev 27:35–42
CAS
CrossRef
PubMed
Google Scholar
Taylor-Teeples M, Lin L, De Lucas M, Turco G, Toal T, Gaudinier A, Young N, Trabucco G, Veling M, Lamothe R (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536):571–575
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Krouk G, Lingeman J, Colon AM, Coruzzi G, Shasha D (2013) Gene regulatory networks in plants: learning causality from time and perturbation. Genome Biol 14(6):123
CrossRef
PubMed
PubMed Central
Google Scholar
Patel RV, Nahal HK, Breit R, Provart NJ (2012) BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. Plant J 71(6):1038–1050. doi:10.1111/j.1365-313X.2012.05055.x
CAS
CrossRef
PubMed
Google Scholar
Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39(Suppl 1):D1114–D1117
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen C-Y, Chou A, Ienasescu H (2013) JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res gkt997
Google Scholar
Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21(10):2568–2569
CAS
CrossRef
PubMed
Google Scholar
Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E (2006) AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 140(3):818–829
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Yilmaz A, Nishiyama MY, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149(1):171–180
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59(1):191–203
CAS
CrossRef
PubMed
Google Scholar
Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K (2012) Identification of cis-acting promoter elements in cold-and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19(1):37–49
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Chen Z-Y, Guo X-J, Chen Z-X, Chen W-Y, Liu D-C, Zheng Y-L, Liu Y-X, Wei Y-M, Wang J-R (2015) Genome-wide characterization of developmental stage-and tissue-specific transcription factors in wheat. BMC Genomics 16(1):125
CrossRef
PubMed
PubMed Central
Google Scholar
Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45(1):43–50
CAS
CrossRef
PubMed
Google Scholar
Mochida K, Ha CV, Sulieman S, Dong NV, Tran LSP (2015) Databases of transcription factors in legumes. Biol Nitr Fix pp 817–822
Google Scholar
Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, Van de Peer Y, Vandepoele K (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21(12):3718–3731
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y, Vandepoele K (2011) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol 158:590–600. doi:10.1104/pp.111.189514
PubMed
PubMed Central
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Rouard M, Guignon V, Walde C, Droc G, Dufayard J, Conte M (2011) GreenPhylDB: phylogenomic resources for comparative and functional genomics in plants. Nucleic Acids Res 39(Database Issue):D1095–D1102
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Conte MG, Gaillard S, Lanau N, Rouard M, Périn C (2008) GreenPhylDB: a database for plant comparative genomics. Nucleic Acids Res 36(Database issue):D991–D998. Epub 2007 Nov 5
Google Scholar
Monaco MK, Stein J, Naithani S, Wei S, Dharmawardhana P, Kumari S, Amarasinghe V, Youens-Clark K, Thomason J, Preece J (2014) Gramene 2013: comparative plant genomics resources. Nucleic Acids Res 42(D1):D1193–D1199
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y (2005) The SOL Genomics Network. A comparative resource for Solanaceae biology and beyond. Plant Physiol 138(3):1310–1317
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H (2015) The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res 43(D1):D1036–D1041
CrossRef
PubMed
PubMed Central
Google Scholar
Matthews DE, Lazo GR, Anderson OD (2009) Plant and crop databases. In: Gustafson JP, Langridge P, Somers DJ (eds) Plant genomics, vol 513, Methods in molecular biology. Humana, New York, pp 243–262. doi:10.1007/978-1-59745-427-8_13
CrossRef
Google Scholar
Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar S (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci 104(11):4730–4735
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Popescu SC, Snyder M, Dinesh-Kumar S (2007) Arabidopsis protein microarrays for the high-throughput identification of protein-protein interactions. Plant Signal Behav 2(5):416–420
CrossRef
PubMed
PubMed Central
Google Scholar
Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23(1):80–92
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Popescu SC, Popescu GV, Snyder M, Dinesh-Kumar SP (2009) Integrated analysis of co-expressed MAP kinase substrates in Arabidopsis thaliana. Plant Signal Behav 4(6):524–527
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lee HY, Bowen CH, Popescu GV, Kang H-G, Kato N, Ma S, Dinesh-Kumar S, Snyder M, Popescu SC (2011) Arabidopsis RTNLB1 and RTNLB2 reticulon-like proteins regulate intracellular trafficking and activity of the FLS2 immune receptor. Plant Cell 23(9):3374–3391
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJ, Conrath U (2016) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhostresistance. New Phytol 209(1):294–306. doi:10.1111/nph.13582. Epub 2015 Aug 28
Google Scholar
Dreze M, Carvunis A-R, Charloteaux B, Galli M, Pevzner SJ, Tasan M, Ahn Y-Y, Balumuri P, Barabási A-L, Bautista V (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607
CrossRef
Google Scholar
Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Thelen JJ, Peck SC (2007) Quantitative proteomics in plants: choices in abundance. Plant Cell 19(11):3339–3346
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Elmore JM, Liu J, Smith B, Phinney B, Coaker G (2012) Quantitative proteomics reveals dynamic changes in the plasma membrane during Arabidopsis immune signaling. Mol Cell Proteomics 11(4):M111.014555
CrossRef
PubMed
PubMed Central
Google Scholar
Kim YJ, Lee HM, Wang Y, Wu J, Kim SG, Kang KY, Park KH, Kim YC, Choi IS, Agrawal GK (2013) Depletion of abundant plant RuBisCO protein using the protamine sulfate precipitation method. Proteomics 13(14):2176–2179
CAS
CrossRef
PubMed
Google Scholar
Boschetti E, Righetti PG (2014) Plant proteomics methods to reach low-abundance proteins, Plant proteomics. Springer, New York, pp 111–129
Google Scholar
Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F (2015) Oxidative post-translational modifications of cysteine residues in plant signal transduction. J Exp Bot 66(10):2923–2934
CAS
CrossRef
PubMed
Google Scholar
Takahashi D, Li B, Nakayama T, Kawamura Y, Uemura M (2014) Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS, Plant proteomics. Springer, New York, pp 481–498
Google Scholar
Mann GW, Joshi HJ, Petzold CJ, Heazlewood JL (2013) Proteome coverage of the model plant Arabidopsis thaliana: implications for shotgun proteomic studies. J Proteome 79:195–199
CAS
CrossRef
Google Scholar
Carapito C, Burel A, Guterl P, Walter A, Varrier F, Bertile F, Van Dorsselaer A (2014) MSDA, a proteomics software suite for in‐depth Mass Spectrometry Data Analysis using grid computing. Proteomics 14(9):1014–1019
CAS
CrossRef
PubMed
Google Scholar
Slagel J, Mendoza L, Shteynberg D, Deutsch EW, Moritz RL (2015) Processing shotgun proteomics data on the Amazon Cloud with the Trans-Proteomic Pipeline. Mol Cell Proteomics 14(2):399–404
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kelchtermans P, Bittremieux W, Grave K, Degroeve S, Ramon J, Laukens K, Valkenborg D, Barsnes H, Martens L (2014) Machine learning applications in proteomics research: How the past can boost the future. Proteomics 14(4–5):353–366
CAS
CrossRef
PubMed
Google Scholar
del Toro N, Reisinger F, Foster JM, Contell J, Fabregat A, Safont PR, Hermjakob H, Vizcaíno JA (2014) PRIDE Proteomes: a condensed view of the plethora of public proteomics data available in the PRIDE repository. DILS 2014:21
Google Scholar
Kusebauch U, Deutsch EW, Campbell DS, Sun Z, Farrah T, Moritz RL (2014) Using PeptideAtlas, SRMAtlas, and PASSEL: comprehensive resources for discovery and targeted proteomics. Curr Protoc Bioinform 46: 13.25. 11–13.25.28
Google Scholar
Fenyö D, Beavis RC (2015) The GPMDB REST Interface. Bioinformatics 31(12):2056–2058
CrossRef
PubMed
Google Scholar
Sun Q, Zybailov B, Majeran W, Friso G, Olinares PDB, van Wijk KJ (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37(Suppl 1):D969–D974
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Joshi HJ, Christiansen KM, Fitz J, Cao J, Lipzen A, Martin J, Smith-Moritz AM, Pennacchio LA, Schackwitz WS, Weigel D (2012) 1001 proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions. Bioinformatics 28(10):1303–1306
CAS
CrossRef
PubMed
Google Scholar
Hirsch-Hoffmann M, Gruissem W, Baerenfaller K (2012) pep2pro: the high-throughput proteomics data processing, analysis, and visualization tool. Front Plant Sci 3:123
CrossRef
PubMed
PubMed Central
Google Scholar
Baerenfaller K, Hirsch-Hoffmann M, Svozil J, Hull R, Russenberger D, Bischof S, Lu Q, Gruissem W, Baginsky S (2011) pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana. Integr Biol 3(3):225–237
CAS
CrossRef
Google Scholar
Sakata K, Komatsu S (2014) Plant Proteomics: From Genome Sequencing to Proteome Databases and Repositories. In: Jorrin-Novo JV, Komatsu S, Weckwerth W, Wienkoop S (eds) Plant proteomics, vol 1072, Methods in molecular biology. Humana, New York, pp 29–42. doi:10.1007/978-1-62703-631-3_3
CrossRef
Google Scholar
Mohammed Y, Mostovenko E, Henneman AA, Marissen RJ, Deelder AM, Palmblad M (2012) Cloud parallel processing of tandem mass spectrometry based proteomics data. J Proteome Res 11(10):5101–5108
CAS
CrossRef
PubMed
Google Scholar
Pratt B, Howbert JJ, Tasman NI, Nilsson EJ (2012) MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services. Bioinformatics 28(1):136–137. doi:10.1093/bioinformatics/btr615. Epub 2011 Nov 8
Google Scholar
Keller A, Eng J, Zhang N, Xj L, Aebersold R (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1(1)
Google Scholar
Muth T, Peters J, Blackburn J, Rapp E, Martens L (2013) ProteoCloud: a full-featured open source proteomics cloud computing pipeline. J Proteome 88:104–108
CAS
CrossRef
Google Scholar
Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh MH, Baldock R, Barbiera G, Bardou P, Beck T, Blake A, Bonierbale M, Brookes AJ, Bucci G, Buetti I, Burge S, Cabau C, Carlson JW, Chelala C, Chrysostomou C, Cittaro D, Collin O, Cordova R, Cutts RJ, Dassi E, Genova AD, Djari A, Esposito A, Estrella H, Eyras E, Fernandez-Banet J, Forbes S, Free RC, Fujisawa T, Gadaleta E, Garcia-Manteiga JM, Goodstein D, Gray K, Guerra-Assunção JA, Haggarty B, Han D-J, Han BW, Harris T, Harshbarger J, Hastings RK, Hayes RD, Hoede C, Hu S, Hu Z-L, Hutchins L, Kan Z, Kawaji H, Keliet A, Kerhornou A, Kim S, Kinsella R, Klopp C, Kong L, Lawson D, Lazarevic D, Lee J-H, Letellier T, Li C-Y, Lio P, Liu C-J, Luo J, Maass A, Mariette J, Maurel T, Merella S, Mohamed AM, Moreews F, Nabihoudine I, Ndegwa N, Noirot C, Perez-Llamas C, Primig M, Quattrone A, Quesneville H, Rambaldi D, Reecy J, Riba M, Rosanoff S, Saddiq AA, Salas E, Sallou O, Shepherd R, Simon R, Sperling L, Spooner W, Staines DM, Steinbach D, Stone K, Stupka E, Teague JW, Dayem Ullah AZ, Wang J, Ware D, Wong-Erasmus M, Youens-Clark K, Zadissa A, Zhang S-J, Kasprzyk A (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43(W1):W589–W598
CrossRef
PubMed
PubMed Central
Google Scholar
Paten B, Diekhans M, Druker BJ, Friend S, Guinney J, Gassner N, Guttman M, James Kent W, Mantey P, Margolin AA, Massie M, Novak AM, Nothaft F, Pachter L, Patterson D, Smuga-Otto M, Stuart JM, Van′t Veer L, Wold B, Haussler D (2015) The NIH BD2K center for big data in translational genomics. J Am Med Inform Assoc 22(6):1143–1147
PubMed
Google Scholar
Sinha S, Song J, Weinshilboum R, Jongeneel V, Han J (2015) KnowEnG: a knowledge engine for genomics. J Am Med Inform Assoc 22(6):1115–1119
PubMed
Google Scholar
Crosswell LC, Thornton JM (2012) ELIXIR: a distributed infrastructure for European biological data. Trends Biotechnol 30(5):241–242
CAS
CrossRef
PubMed
Google Scholar
Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, Matasci N, Wang L, Hanlon M, Lenards A et al (2011) The iPlant collaborative: cyberinfrastructure for plant biology. Front Plant Sci 2:34
CrossRef
PubMed
PubMed Central
Google Scholar
Burleigh JG, Bansal MS, Eulenstein O, Hartmann S, Wehe A, Vision TJ (2011) Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. Syst Biol 60(2):117–125
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Matasci N, Hung L-H, Yan Z, Carpenter EJ, Wickett NJ, Mirarab S, Nguyen N, Warnow T, Ayyampalayam S, Barker M (2014) Data access for the 1,000 Plants (1KP) project. Gigascience 3(1):1–10
CrossRef
Google Scholar
Ward R, Wan M, Schroeder W, Rajasekar A, de Torcy A, Russell T, Xu H, Moore R. The integrated Rule-Oriented Data System (iRODS 3.0) Micro-service Workbook. ISBN:9781466469129 DICE Foundation
Google Scholar
Oliver SL, Lenards AJ, Barthelson RA, Merchant N, McKay SJ (2002) Using the iPlant Collaborative Discovery Environment, Current protocols in bioinformatics. John Wiley, Hoboken, NJ. doi:10.1002/0471250953.bi0122s42
Google Scholar
Skidmore E, Kim S-j, Kuchimanchi S, Singaram S, Merchant N, Stanzione D iPlant atmosphere: a gateway to cloud infrastructure for the plant sciences. In: Proceedings of the 2011 ACM workshop on Gateway computing environments, 2011. ACM, pp 59–64
Google Scholar
McKay SJ, Skidmore EJ, LaRose CJ, Mercer AW, Noutsos C (2013) Cloud computing with iPlant atmosphere. Curr Protoc Bioinform 9.15. 11–19.15. 20
Google Scholar
Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE (2015) Big Data: astronomical or genomical? PLoS Biol 13(7):e1002195
CrossRef
PubMed
PubMed Central
Google Scholar
Orchard S, Binz PA, Jones AR, Vizcaino JA, Deutsch EW, Hermjakob H (2013) Preparing to work with Big Data in proteomics–a report on the HUPO‐PSI spring workshop. Proteomics 13(20):2931–2937
CAS
CrossRef
PubMed
Google Scholar
Pennisi E (2005) How will big pictures emerge from a sea of biological data? Science 309(5731):94
CAS
CrossRef
PubMed
Google Scholar
Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JI, Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Karr JR, Takahashi K, Funahashi A (2015) The principles of whole-cell modeling. Curr Opin Microbiol 27:18–24
CAS
CrossRef
PubMed
Google Scholar
Gonzalez N, Inzé D (2015) Molecular systems governing leaf growth: from genes to networks. J Exp Bot 66(4):1045–1054
CAS
CrossRef
PubMed
Google Scholar
Westlake TJ, Ricci WA, Popescu GV, Popescu SC (2015) Dimerization and thiol sensitivity of the salicylic acid binding thimet oligopeptidases TOP1 and TOP2 define their functions in redox-sensitive cellular pathways. Front Plant Sci 6:327
CrossRef
PubMed
PubMed Central
Google Scholar
Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, de Reffye P (2014) Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc Natl Acad Sci 111(39):E4127–E4136
CAS
CrossRef
PubMed
PubMed Central
Google Scholar