Skip to main content

Computational Modeling of T Cell Receptor Complexes

  • Protocol
  • First Online:
Computational Design of Ligand Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1414))

Abstract

T-cell receptor (TCR) binding to peptide/MHC determines specificity and initiates signaling in antigen-specific cellular immune responses. Structures of TCR–pMHC complexes have provided enormous insight to cellular immune functions, permitted a rational understanding of processes such as pathogen escape, and led to the development of novel approaches for the design of vaccines and other therapeutics. As production, crystallization, and structure determination of TCR–pMHC complexes can be challenging, there is considerable interest in modeling new complexes. Here we describe a rapid approach to TCR–pMHC modeling that takes advantage of structural features conserved in known complexes, such as the restricted TCR binding site and the generally conserved diagonal docking mode. The approach relies on the powerful Rosetta suite and is implemented using the PyRosetta scripting environment. We show how the approach can recapitulate changes in TCR binding angles and other structural details, and highlight areas where careful evaluation of parameters is needed and alternative choices might be made. As TCRs are highly sensitive to subtle structural perturbations, there is room for improvement. Our method nonetheless generates high-quality models that can be foundational for structure-based hypotheses regarding TCR recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garboczi DN, Ghosh P, Utz U et al (1996) Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384:134–141

    Article  CAS  PubMed  Google Scholar 

  2. Garcia KC, Degano M, Stanfield RL et al (1996) An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex [see comments]. Science 274:209–219

    Article  CAS  PubMed  Google Scholar 

  3. Borbulevych OY, Piepenbrink KH, Baker BM (2011) Conformational melding permits a conserved binding geometry in TCR recognition of foreign and self molecular mimics. J Immunol 186:2950–2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cole DK, Yuan F, Rizkallah PJ et al (2009) Germline-governed recognition of a cancer epitope by an immunodominant human T-cell receptor. J Biol Chem 284:27281–27289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Macdonald WA, Chen Z, Gras S et al (2009) T cell allorecognition via molecular mimicry. Immunity 31:897–908

    Article  CAS  PubMed  Google Scholar 

  6. Adams JJ, Narayanan S, Liu B et al (2011) T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35:681–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bulek AM, Cole DK, Skowera A et al (2012) Structural basis for the killing of human beta cells by CD8+ T cells in type 1 diabetes. Nat Immunol 13:283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J-L, Stewart-Jones G, Bossi G et al (2005) Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J Exp Med 201:1243–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281

    Article  CAS  PubMed  Google Scholar 

  10. Oates J, Jakobsen BK (2013) ImmTACs: novel bi-specific agents for targeted cancer therapy. Oncoimmunology 2:e22891

    Article  PubMed  PubMed Central  Google Scholar 

  11. Van Boxel GI, Stewart-Jones G, Holmes S et al (2009) Some lessons from the systematic production and structural analysis of soluble αβ T-cell receptors. J Immunol Methods 350:14–21

    Article  PubMed  Google Scholar 

  12. Bulek AM, Madura F, Fuller A et al (2012) TCR/pMHC optimized protein crystallization screen. J Immunol Methods 382:203–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cole DK, Pumphrey NJ, Boulter JM et al (2007) Human TCR-binding affinity is governed by MHC class restriction. J Immunol 178:5727–5734

    Article  CAS  PubMed  Google Scholar 

  14. Davis MM, Boniface JJ, Reich Z et al (1998) Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol 16:523–544

    Article  CAS  PubMed  Google Scholar 

  15. Pierce BG, Weng Z (2013) A flexible docking approach for prediction of T cell receptor–peptide–MHC complexes. Protein Sci 22:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pierce BG, Vreven T, Weng Z (2014) Modeling T cell receptor recognition of CD1-lipid and MR1-metabolite complexes. BMC Bioinformatics 15:319

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xia Z, Chen H, Kang S-G et al (2014) The complex and specific pMHC interactions with diverse HIV-1 TCR clonotypes reveal a structural basis for alterations in CTL function. Sci Rep 4:4087

    PubMed  PubMed Central  Google Scholar 

  18. Michielin O, Luescher I, Karplus M (2000) Modeling of the TCR-MHC-peptide complex1. J Mol Biol 300:1205–1235

    Article  CAS  PubMed  Google Scholar 

  19. De Rosa MC, Giardina B, Bianchi C et al (2010) Modeling the ternary complex TCR-Vβ/collagenII(261–273)/HLA-DR4 associated with rheumatoid arthritis. PLoS One 5:e11550

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu IH, Lo YS, Yang JM (2013) Genome-wide structural modelling of TCR-pMHC interactions. BMC Genomics 14(Suppl 5):S5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leimgruber A, Ferber M, Irving M et al (2011) TCRep 3D: an automated in silico approach to study the structural properties of TCR repertoires. PLoS One 6:e26301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klausen MS, Anderson MV, Jespersen MC et al (2015) LYRA, a webserver for lymphocyte receptor structural modeling. Nucleic Acids Res 43:W349

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ding YH, Baker BM, Garboczi DN et al (1999) Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11:45–56

    Article  CAS  PubMed  Google Scholar 

  24. Borbulevych OY, Santhanagopolan SM, Hossain M et al (2011) TCRs used in cancer gene therapy cross-react with MART-1/melan-a tumor antigens via distinct mechanisms. J Immunol 187:2453–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gagnon SJ, Borbulevych OY, Davis-Harrison RL et al (2006) T cell receptor recognition via cooperative conformational plasticity. J Mol Biol 363:228–243

    Article  CAS  PubMed  Google Scholar 

  26. Borbulevych OY, Piepenbrink KH, Gloor BE et al (2009) T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility. Immunity 31:885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piepenbrink KH, Borbulevych OY, Sommese RF et al (2009) Fluorine substitutions in an antigenic peptide selectively modulate T-cell receptor binding in a minimally perturbing manner. Biochem J 423:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scott DR, Borbulevych OY, Piepenbrink KH et al (2011) Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism. J Mol Biol 414:385–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khan AR, Baker BM, Ghosh P et al (2000) The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J Immunol 164:6398–6405

    Article  CAS  PubMed  Google Scholar 

  30. Utz U, Banks D, Jacobson S et al (1996) Analysis of the T-cell receptor repertoire of human T-cell leukemia virus type 1 (HTLV-1) Tax-specific CD8+ cytotoxic T lymphocytes from patients with HTLV-1-associated disease: evidence for oligoclonal expansion. J Virol 70:843–851

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson LA, Heemskerk B, Powell DJ Jr et al (2006) Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 177:6548–6559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaufmann KW, Lemmon GH, Deluca SL et al (2010) Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49:2987–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26:689–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466

    Article  CAS  PubMed  Google Scholar 

  35. Miles JJ, Mccluskey J, Rossjohn J et al (2015) Understanding the complexity and malleability of T-cell recognition. Immunol Cell Biol 93:433–441

    Article  CAS  PubMed  Google Scholar 

  36. Chaudhury S, Gray JJ (2008) Conformer selection and induced fit in flexible backbone protein–protein docking using computational and NMR ensembles. J Mol Biol 381:1068–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gray JJ, Moughon S, Wang C et al (2003) Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331:281–299

    Article  CAS  PubMed  Google Scholar 

  38. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 6:551–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park M-S, Park SY, Miller KR et al (2013) Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens. Mol Immunol 56:81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schueler-Furman O, Elber R, Margalit H (1998) Knowledge-based structure prediction of MHC class I bound peptides: a study of 23 complexes. Fold Des 3:549–564

    Article  CAS  PubMed  Google Scholar 

  41. Fagerberg T, Cerottini J-C, Michielin O (2006) Structural prediction of peptides bound to MHC class I. J Mol Biol 356:521–546

    Article  CAS  PubMed  Google Scholar 

  42. Yanover C, Bradley P (2011) Large-scale characterization of peptide-MHC binding landscapes with structural simulations. Proc Natl Acad Sci 108:6981–6986

    Article  PubMed  PubMed Central  Google Scholar 

  43. Borbulevych OY, Insaidoo FK, Baxter TK et al (2007) Structures of MART-1(26/27-35) peptide/HLA-A2 complexes reveal a remarkable disconnect between antigen structural homology and T cell recognition. J Mol Biol 372:1123–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robinson J, Mistry K, Mcwilliam H et al (2011) The IMGT/HLA database. Nucleic Acids Res 39:D1171–D1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Computational structural immunology in the authors’ laboratories is supported by NIH grants R01GM103773 and R01GM067079 and an award from the Carole and Ray Neag Comprehensive Cancer Center at the University of Connecticut. TPR is supported by a fellowship from the Indiana CTSI, funded in part by NIH grant UL1TR001108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Riley, T.P., Singh, N.K., Pierce, B.G., Weng, Z., Baker, B.M. (2016). Computational Modeling of T Cell Receptor Complexes. In: Stoddard, B. (eds) Computational Design of Ligand Binding Proteins. Methods in Molecular Biology, vol 1414. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3569-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3569-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3567-3

  • Online ISBN: 978-1-4939-3569-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics