Skip to main content

Volumetric MRI as a Diagnostic Tool in Alzheimer’s Disease

  • Protocol
  • First Online:
Immunotherapy and Biomarkers in Neurodegenerative Disorders

Abstract

Brain atrophy is one of the key features of Alzheimer’s disease (AD), and neuroimaging techniques, such as computer tomography (CT) and magnetic resonance imaging (MRI), have made it possible to study this pathological process in vivo. However, the use of clinical imaging in dementia evaluation is often suboptimal. Evidence supports the role of regional and global atrophy as well as white matter changes as markers of disease in dementia. There is an urgent need to apply this knowledge to optimize clinical imaging practice. In the following chapter we describe different methods to measure or estimate brain structures and white matter changes. Methods to judge the presence and distribution of cerebral microbleeds are also discussed. We describe both methods that are used in clinical practice today and methods that are still only applied in research or in clinical trials. The more advanced automated methods to estimate brain atrophy as well as other changes will hopefully be implemented in clinical practice in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  2. Jack CR Jr, Petersen RC, Xu Y et al (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51(4):993–999

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jack CR Jr, Petersen RC, Xu YC et al (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49(3):786–794

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Souza LC, Chupin M, Bertoux M et al (2013) Is hippocampal volume a good marker to differentiate Alzheimer’s disease from frontotemporal dementia? J Alzheimers Dis 36(1):57–66. doi:10.3233/JAD-122293

    PubMed  Google Scholar 

  5. Laakso MP, Partanen K, Riekkinen P et al (1996) Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: An MRI study. Neurology 46(3):678–681

    Article  CAS  PubMed  Google Scholar 

  6. Scheltens P, Leys D, Barkhof F et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55(10):967–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koedam EL, Lehmann M, van der Flier WM et al (2011) Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 21(12):2618–2625. doi:10.1007/s00330-011-2205-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pasquier F, Leys D, Weerts JG et al (1996) Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 36(5):268–272

    Article  CAS  PubMed  Google Scholar 

  9. Westman E, Cavallin L, Muehlboeck JS et al (2011) Sensitivity and specificity of medial temporal lobe visual ratings and multivariate regional MRI classification in Alzheimer’s disease. PLoS ONE 6(7), e22506. doi:10.1371/journal.pone.0022506, PONE-D-11-06805 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boche D, Zotova E, Weller RO et al (2008) Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain 131(Pt 12):3299–3310. doi:10.1093/brain/awn261

    Article  CAS  PubMed  Google Scholar 

  11. Orgogozo JM, Gilman S, Dartigues JF et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61(1):46–54

    Article  CAS  PubMed  Google Scholar 

  12. Sperling RA, Jack CR Jr, Black SE et al (2011) Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement 7(4):367–385. doi:10.1016/j.jalz.2011.05.2351

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wahlund LO, Julin P, Johansson SE et al (2000) Visual rating and volumetry of the medial temporal lobe on magnetic resonance imaging in dementia: a comparative study. J Neurol Neurosurg Psychiatry 69(5):630–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wahlund LO, Julin P, Lindqvist J et al (1999) Visual assessment of medical temporal lobe atrophy in demented and healthy control subjects: correlation with volumetry. Psychiatry Res 90(3):193–199

    Article  CAS  PubMed  Google Scholar 

  15. Scheltens P, Launer LJ, Barkhof F et al (1995) Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 242(9):557–560

    Article  CAS  PubMed  Google Scholar 

  16. Cavallin L, Bronge L, Zhang Y et al (2012) Comparison between visual assessment of MTA and hippocampal volumes in an elderly, non-demented population. Acta Radiol 53(5):573–579. doi:10.1258/ar.2012.110664

    Article  PubMed  Google Scholar 

  17. Pereira JB, Cavallin L, Spulber G et al (2013) Influence of age, disease onset and ApoE4 on visual medial temporal lobe atrophy cut-offs. J Intern Med. doi:10.1111/joim.12148

    PubMed  Google Scholar 

  18. Karas G, Scheltens P, Rombouts S et al (2007) Precuneus atrophy in early-onset alzheimer’s disease: a morphometric structural MRI study. Neuroradiology 49(12):967–976. doi:10.1007/s00234-007-0269-2

    Article  PubMed  Google Scholar 

  19. Wahlund LO, Barkhof F, Fazekas F et al (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32(6):1318–1322. doi:10.1161/01.str.32.6.1318

    Article  CAS  PubMed  Google Scholar 

  20. Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am J Roentgenol 149(2):351–356. doi:10.2214/ajr.149.2.351

    Google Scholar 

  21. Inzitari D, Pracucci G, Poggesi A et al. (2009) Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ 339:b2477. doi:10.1136/bmj.b2477

    Google Scholar 

  22. Cordonnier C, Potter GM, Jackson CA et al (2009) Improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS). Stroke 40(1):94–99. doi:10.1161/STROKEAHA.108.526996

    Article  PubMed  Google Scholar 

  23. Gregoire SM, Chaudhary UJ, Brown MM et al (2009) The microbleed anatomical rating scale (MARS): reliability of a tool to map brain microbleeds. Neurology 73(21):1759–1766. doi:10.1212/WNL.0b013e3181c34a7d

    Article  CAS  PubMed  Google Scholar 

  24. Hampel H, Bürger K, Teipel SJ et al (2008) Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement 4(1):38–48

    Article  CAS  PubMed  Google Scholar 

  25. Howard MA, Roberts N, Garcia-Finana M et al (2003) Volume estimation of prefrontal cortical subfields using MRI and stereology. Brain Res Brain Res Protoc 10(3):125–138

    Article  PubMed  Google Scholar 

  26. Goncharova II, Dickerson BC, Stoub TR et al (2001) MRI of human entorhinal cortex: a reliable protocol for volumetric measurement. Neurobiol Aging 22(5):737–745

    Article  CAS  PubMed  Google Scholar 

  27. Jack CR Jr, Theodore WH, Cook M et al (1995) MRI-based hippocampal volumetrics: data acquisition, normal ranges, and optimal protocol. Magn Reson Imaging 13(8):1057–1064

    Article  PubMed  Google Scholar 

  28. Eritaia J, Wood SJ, Stuart GW et al (2000) An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med 44(6):973–977

    Article  CAS  PubMed  Google Scholar 

  29. Teipel SJ, Pruessner JC, Faltraco F et al (2006) Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J Neurol 253(6):794–800. doi:10.1007/s00415-006-0120-4

    Article  PubMed  Google Scholar 

  30. Giannakopoulos P, Kovari E, Gold G et al (2009) Pathological substrates of cognitive decline in Alzheimer’s disease. Front Neurol Neurosci 24:20–29. doi:10.1159/000197881

    Article  PubMed  Google Scholar 

  31. Teipel SJ, Grothe M, Lista S et al (2013) Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Med Clin N Am 97(3):399–424. doi:10.1016/j.mcna.2012.12.013, http://dx.doi.org

    Article  PubMed  Google Scholar 

  32. Jack CR Jr, Petersen RC, Xu YC et al (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52(7):1397–1403

    Article  PubMed  PubMed Central  Google Scholar 

  33. Convit A, De Leon MJ, Tarshish C et al (1997) Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging 18(2):131–138

    Article  CAS  PubMed  Google Scholar 

  34. Killiany RJ, Moss MB, Albert MS et al (1993) Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer’s disease. Arch Neurol 50(9):949–954

    Article  CAS  PubMed  Google Scholar 

  35. Frisoni GB, Jack CR (2011) Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use. Alzheimers Dement 7(2):171–174. doi:10.1016/j.jalz.2010.06.007

    Article  PubMed  Google Scholar 

  36. Hampel H, Lista S, Teipel SJ et al (2014) Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol 88(4):426–449. doi:10.1016/j.bcp.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  37. Jack CR, Slomkowski M, Gracon S et al (2003) MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 60(2):253–260. doi:10.1212/01.wnl.0000042480.86872.03

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wilkinson D, Fox NC, Barkhof F et al (2012) Memantine and brain atrophy in Alzheimer’s disease: a 1-year randomized controlled trial. J Alzheimers Dis 29(2):459–469. doi:10.3233/JAD-2011-111616

    CAS  PubMed  Google Scholar 

  39. Fox NC, Black RS, Gilman S et al (2005) Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64(9):1563–1572. doi:10.1212/01.wnl.0000159743.08996.99

    Article  CAS  PubMed  Google Scholar 

  40. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 Pt 1):805–821. doi:10.1006/nimg.2000.0582

    Article  CAS  PubMed  Google Scholar 

  41. Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980

    Article  PubMed  Google Scholar 

  42. Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22

    Article  PubMed  Google Scholar 

  43. Hanseeuw BJ, Van Leemput K, Kavec M et al (2011) Mild cognitive impairment: differential atrophy in the hippocampal subfields. Am J Neuroradiol 32(9):1658–1661. doi:10.3174/ajnr.A2589

    Google Scholar 

  44. Lindberg O, Walterfang M, Looi JC et al (2012) Hippocampal shape analysis in Alzheimer’s disease and frontotemporal lobar degeneration subtypes. J Alzheimers Dis 30(2):355–365. doi:10.3233/JAD-2012-112210

    PubMed  Google Scholar 

  45. Whitwell JL, Dickson DW, Murray ME et al (2012) Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol 11(10):868–877. doi:10.1016/S1474-4422(12)70200-4

    Article  PubMed  PubMed Central  Google Scholar 

  46. Damangir S, Manzouri A, Oppedal K et al (2012) Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines. J Neurol Sci 322(1-2):211–216. doi:10.1016/j.jns.2012.07.064

    Article  PubMed  Google Scholar 

  47. Smith AD, Smith SM, de Jager CA et al (2010) Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One 5(9), e12244. doi:10.1371/journal.pone.0012244

    Article  PubMed  PubMed Central  Google Scholar 

  48. Douaud G, Refsum H, de Jager CA et al (2013) Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A 110(23):9523–9528. doi:10.1073/pnas.1301816110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cuingnet R, Gerardin E, Tessieras J et al (2011) Automatic classification of patients with Alzheimer’s disease from structural Magnetic Resonance Imaging (MRI): a comparison of ten methods using the ADNI database. Neuroimage 56(2):766–781. doi:10.1016/j.neuroimage.2010.06.013, doi:S1053-8119(10)00857-8 [pii]

    Google Scholar 

  50. Davatzikos C, Bhatt P, Shaw LM et al. (2011) Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging. doi:S0197-4580(10)00237-X [pii], 10.1016/j.neurobiolaging.2010.05.023

    Google Scholar 

  51. Spulber G, Simmons A, Muehlboeck JS et al (2013) An MRI-based index to measure the severity of Alzheimer’s disease-like structural pattern in subjects with mild cognitive impairment. J Intern Med 273(4):396–409. doi:10.1111/joim.12028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Westman E, Simmons A, Muehlboeck JS et al (2011) AddNeuroMed and ADNI: similar patterns of Alzheimer’s atrophy and automated MRI classification accuracy in Europe and North America. Neuroimage 58(3):818–828. doi:10.1016/j.neuroimage.2011.06.065, doi:S1053-8119(11)00711-7 [pii]

    Article  PubMed  Google Scholar 

  53. Davatzikos C, Fan Y, Wu X et al (2008) Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol Aging 29(4):514–523. doi:10.1016/j.neurobiolaging.2006.11.010, doi:S0197-4580(06)00429-5 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang D, Wang Y, Zhou L et al (2011) Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55(3):856–867

    Article  PubMed  PubMed Central  Google Scholar 

  55. Westman E, Muehlboeck JS, Simmons A (2012) Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage 62(1):229–238. doi:10.1016/j.neuroimage.2012.04.056, doi:S1053-8119(12)00452-1 [pii]

    Article  PubMed  Google Scholar 

  56. McEvoy LK, Fennema-Notestine C, Roddey JC et al. (2009) Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology:2511080924. doi:10.1148/radiol.2511080924

    Google Scholar 

  57. Falahati F, Westman E, Simmons A (2014) Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging. J Alzheimers Dis 41(3):685–708. doi:10.3233/JAD-131928

    PubMed  Google Scholar 

  58. Walhovd KB, Fjell AM, Brewer J et al (2010) Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. Am J Neuroradiol 31(2):347–354. doi:10.3174/ajnr.A1809, doi:ajnr.A1809 [pii]

    Google Scholar 

  59. Mattila J, Koikkalainen J, Virkki A et al (2011) A disease state fingerprint for evaluation of Alzheimer’s disease. J Alzheimers Dis 27(1):163–176. doi:10.3233/JAD-2011-110365

    PubMed  Google Scholar 

  60. Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6(8):734–746

    Article  PubMed  Google Scholar 

  61. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269. doi:10.1016/j.jalz.2011.03.005, doi:S1552-5260(11)00101-4 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zarow C, Vinters HV, Ellis WG et al (2005) Correlates of hippocampal neuron number in Alzheimer’s disease and ischemic vascular dementia. Ann Neurol 57(6):896–903. doi:10.1002/ana.20503

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Olof Wahlund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Westman, E., Cavalin, L., Wahlund, LO. (2016). Volumetric MRI as a Diagnostic Tool in Alzheimer’s Disease. In: Ingelsson, M., Lannfelt, L. (eds) Immunotherapy and Biomarkers in Neurodegenerative Disorders. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3560-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3560-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3558-1

  • Online ISBN: 978-1-4939-3560-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics