Skip to main content

Studying Kinetochore Kinases

  • Protocol
  • First Online:
The Mitotic Spindle

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1413))

Abstract

Mitotic kinetochores are signaling network hubs that regulate chromosome movements, attachment error-correction, and the spindle assembly checkpoint. Key switches in these networks are kinases and phosphatases that enable rapid responses to changing conditions. Describing the mechanisms and dynamics of their localized activation and deactivation is therefore instrumental for understanding the spatiotemporal control of chromosome segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sacristan C, Kops GJPL (2015) Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol 25:21. doi:10.1016/j.tcb.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  2. London N, Biggins S (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15:736–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Magidson V et al (2011) The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kitajima TS, Ohsugi M, Ellenberg J (2011) Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146:568–581

    Article  CAS  PubMed  Google Scholar 

  7. Vleugel M, Hoogendoorn E, Snel B, Kops GJPL (2012) Evolution and function of the mitotic checkpoint. Dev Cell 23:239–250

    Article  CAS  PubMed  Google Scholar 

  8. Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint review. Curr Biol 22:R966–R980

    Article  CAS  PubMed  Google Scholar 

  9. Liu D et al (2010) Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 188:809–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foley EA, Maldonado M, Kapoor TM (2011) Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat Cell Biol 13:1265–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suijkerbuijk SJE, Vleugel M, Teixeira A, Kops GJPL (2012) Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 23:745–755

    Article  CAS  PubMed  Google Scholar 

  12. Nijenhuis W, Vallardi G, Teixeira A, Kops GJPL, Saurin AT (2014) Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol 16:1257–1264

    Article  CAS  PubMed  Google Scholar 

  13. Pinsky BA, Nelson CR, Biggins S (2009) Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr Biol 19:1182–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Espert A et al (2014) PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing. J Cell Biol 206:833–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Macůrek L et al (2008) Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455:119–123

    Article  PubMed  Google Scholar 

  16. Saurin AT, van der Waal MS, Medema REH, Lens SMA, Kops GJPL (2011) Aurora B potentiates mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis. Nat Commun 2:316–319

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yamagishi Y, Yang C-H, Tanno Y, Watanabe Y (2012) MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol 14:746–752

    Article  CAS  PubMed  Google Scholar 

  18. Bishop AC, Buzko O, Shokat KM (2001) Magic bullets for protein kinases. Trends Cell Biol 11:167–172

    Article  CAS  PubMed  Google Scholar 

  19. Ditchfield C et al (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hauf S et al (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lens SMA, Voest EE, Medema RH (2010) Shared and separate functions of polo-like kinases and aurora kinasesin cancer. Nat Rev Cancer 10:1–17

    Article  Google Scholar 

  22. Kwiatkowski N et al (2010) Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol 6:359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santaguida S, Tighe A, D’Alise AM, Taylor SS, Musacchio A (2010) Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J Cell Biol 190:73–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hewitt L et al (2010) Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol 190:25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Colombo R et al (2010) Targeting the mitotic checkpoint for cancer therapy with NMS-P715, an inhibitor of MPS1 kinase. Cancer Res 70:10255–10264

    Article  CAS  PubMed  Google Scholar 

  26. Lénárt P et al (2007) The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol 17:304–315

    Article  PubMed  Google Scholar 

  27. Santamaria A et al (2007) Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol Biol Cell 18:4024–4036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vassilev LT et al (2006) Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A 103:10660–10665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hengeveld RCC et al (2012) Development of a chemical genetic approach for human aurora B kinase identifies novel substrates of the chromosomal passenger complex. Mol Cell Proteomics 11:47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sliedrecht T, Zhang C, Shokat KM, Kops GJPL, Cimini D (2010) Chemical genetic inhibition of Mps1 in stable human cell lines reveals novel aspects of Mps1 function in mitosis. PLoS One 5:e10251

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maciejowski J et al (2010) Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J Cell Biol 190:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burkard ME et al (2007) Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc Natl Acad Sci U S A 104:4383–4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang J et al (2008) Structure and substrate recruitment of the human spindle checkpoint kinase bub1. Mol Cell 32:394–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hochegger H et al (2007) An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J Cell Biol 178:257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Z, Kenny AE, Brito DA, Rieder CL (2009) Cells satisfy the mitotic checkpoint in Taxol, and do so faster in concentrations that stabilize syntelic attachments. J Cell Biol 186:675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Santaguida S, Vernieri C, Villa F, Ciliberto A, Musacchio A (2011) Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction. EMBO J 30:1508–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Collin P, Nashchekina O, Walker R, Pines J (2013) The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat Cell Biol 15:1378–1385

    Article  CAS  PubMed  Google Scholar 

  38. Daum JR et al (2011) Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr Biol 21:1018–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lara-Gonzalez P, Taylor SS (2012) Cohesion fatigue explains why pharmacological inhibition of the APC/C induces a spindle checkpoint-dependent mitotic arrest. PLoS One 7:e49041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian T. Saurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Saurin, A.T., Kops, G.J.P.L. (2016). Studying Kinetochore Kinases. In: Chang, P., Ohi, R. (eds) The Mitotic Spindle. Methods in Molecular Biology, vol 1413. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3542-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3542-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3540-6

  • Online ISBN: 978-1-4939-3542-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics