Skip to main content

Superresolution Microscopy of the Nuclear Envelope and Associated Proteins

  • Protocol
  • First Online:
The Nuclear Envelope

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1411))

Abstract

Superresolution microscopy is undoubtedly one of the most exciting technologies since the invention of the optical microscope. Capable of nanometer-scale resolution to surpass the diffraction limit and coupled with the versatile labeling techniques available, it is revolutionizing the study of cell biology. Our understanding of the nucleus, the genetic and architectural center of the cell, has gained great advancements through the application of various superresolution microscopy techniques. This chapter describes detailed procedures of multichannel superresolution imaging of the mammalian nucleus, using structured illumination microscopy and single-molecule localization microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv f mikrosk Anatomie 9:413–418

    Article  Google Scholar 

  2. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sousa AA, Kruhlak MJ (2013) Introduction: nanoimaging techniques in biology. Methods Mol Biol 950:1–10

    CAS  PubMed  Google Scholar 

  4. Galbraith CG, Galbraith JA (2011) Super-resolution microscopy at a glance. J Cell Sci 124:1607–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  CAS  PubMed  Google Scholar 

  6. Gustafsson MG, Shao L, Carlton PM et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schermelleh L, Carlton PM, Haase S et al (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  9. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heilemann M, Van De Linde S, Schuttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176

    Article  CAS  PubMed  Google Scholar 

  11. Subach FV, Patterson GH, Manley S et al (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mckinney SA, Murphy CS, Hazelwood KL et al (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deschout H, Cella Zanacchi F, Mlodzianoski M et al (2014) Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods 11:253–266

    Article  CAS  PubMed  Google Scholar 

  14. Small A, Stahlheber S (2014) Fluorophore localization algorithms for super-resolution microscopy. Nat Methods 11:267–279

    Article  CAS  PubMed  Google Scholar 

  15. Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burke B, Stewart CL (2014) Functional architecture of the cell’s nucleus in development, aging, and disease. Curr Top Dev Biol 109:1–52

    Article  PubMed  Google Scholar 

  17. Grossman E, Medalia O, Zwerger M (2012) Functional architecture of the nuclear pore complex. Annu Rev Biophys 41:557–584

    Article  CAS  PubMed  Google Scholar 

  18. Van De Linde S, Loschberger A, Klein T et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009

    Article  PubMed  Google Scholar 

  19. Loschberger A, Van De Linde S, Dabauvalle MC et al (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125:570–575

    Article  PubMed  Google Scholar 

  20. Loschberger A, Franke C, Krohne G et al (2014) Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci 127:4351–4355

    Article  PubMed  Google Scholar 

  21. Gottfert F, Wurm CA, Mueller V et al (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105:L01–L03

    Article  PubMed  PubMed Central  Google Scholar 

  22. Szymborska A, De Marco A, Daigle N et al (2013) Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655–658

    Article  CAS  PubMed  Google Scholar 

  23. Ricci MA, Manzo C, Garcia-Parajo MF et al (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160:1145–1158

    Article  CAS  PubMed  Google Scholar 

  24. Markaki Y, Smeets D, Fiedler S et al (2012) The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Bioessays 34:412–426

    Article  PubMed  Google Scholar 

  25. Horn HF, Kim DI, Wright GD et al (2013) A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J Cell Biol 202:1023–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang AS, Kozlov SV, Stewart CL et al (2015) Tissue specific loss of A-type lamins in the gastrointestinal epithelium can enhance polyp size. Differentiation 89:11–21

    Article  CAS  PubMed  Google Scholar 

  27. Pante N, Bastos R, Mcmorrow I et al (1994) Interactions and three-dimensional localization of a group of nuclear pore complex proteins. J Cell Biol 126:603–617

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed S, Chou A, Sem KP et al. (2014) Using dSTORM to probe the molecular architecture of filopodia. Proc SPIE 8950

    Google Scholar 

  29. Wolter S, Loschberger A, Holm T et al (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9:1040–1041

    Article  CAS  PubMed  Google Scholar 

  30. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  31. Arganda-Carreras I, Sorzano CS, Marabini R et al (2006) Consistent and elastic registration of histological sections using vector-spline regularization. In: Beichel R, Sonka M (eds) Computer vision approaches to medical image analysis. Springer, Berlin, pp 85–95

    Chapter  Google Scholar 

  32. Ambrose EJ (1956) A surface contact microscope for the study of cell movements. Nature 178:1194

    Article  CAS  PubMed  Google Scholar 

  33. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89:141–145

    Article  CAS  PubMed  Google Scholar 

  34. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Srivats Hariharan (Olympus Singapore, formerly IMB, A*STAR) for building the SMLM microscope in the IMB Microscopy Unit together with the lab of Sohail Ahmed (IMB, A*STAR), John Lim Soon Yew (IMB, A*STAR) for assisting with the maintenance and operation of the SMLM microscope and for supporting the image processing and analysis, Declan Lunny (IMB, A*STAR) for the advice and help with the sample preparation, and Brian Burke (IMB, A*STAR) and Colin Stewart (IMB, A*STAR) for supervising the research projects within their labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham D. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xie, W., Horn, H.F., Wright, G.D. (2016). Superresolution Microscopy of the Nuclear Envelope and Associated Proteins. In: Shackleton, S., Collas, P., Schirmer, E. (eds) The Nuclear Envelope. Methods in Molecular Biology, vol 1411. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3530-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3530-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3528-4

  • Online ISBN: 978-1-4939-3530-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics