Skip to main content

Methods for Assessing Nuclear Rotation and Nuclear Positioning in Developing Skeletal Muscle Cells

  • Protocol
  • First Online:
The Nuclear Envelope

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1411))

Abstract

Skeletal muscle cells are large syncytia, containing hundreds of nuclei positioned regularly along the length of the fiber. During development, nuclei are actively distributed throughout the myotube by the microtubule motor proteins, kinesin-1, and cytoplasmic dynein. Nuclear movement consists of translocation along the long axis of the cell concurrent with three-dimensional rotation of nuclei. In this chapter we describe methods for quantitatively assessing the speed of nuclear rotation in cultured myotubes using live-cell imaging techniques coupled with rigid body kinematic analyses. Additionally, we provide protocols for analyzing nuclear distribution in myotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capers CR (1960) Multinucleation of skeletal muscle in vitro. J Biophys Biochem Cytol 7:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cooper WG, Konigsberg IR (1961) Dynamics of myogenesis in vitro. Anat Rec 140:195–205

    Article  CAS  PubMed  Google Scholar 

  3. Englander LL, Rubin LL (1987) Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture. J Cell Biol 104:87–95

    Article  CAS  PubMed  Google Scholar 

  4. Wilson MH, Holzbaur EL (2012) Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells. J Cell Sci 125:4158–4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson MH, Holzbaur EL (2015) Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development 142:218–228

    Article  PubMed  PubMed Central  Google Scholar 

  6. Metzger T, Gache V, Xu M, Cadot B, Folker ES, Richardson BE, Gomes ER, Baylies MK (2012) MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484:120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Z, Cui J, Wong WM, Li X, Xue W, Lin R, Wang J, Wang P, Tanner JA, Cheah KS et al (2013) Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions. Development 140:617–626

    Article  CAS  PubMed  Google Scholar 

  8. Romero NB (2010) Centronuclear myopathies: a widening concept. Neuromuscul Disord 20:223–228

    Article  PubMed  Google Scholar 

  9. Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mellad JA, Warren DT et al (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833

    Article  CAS  PubMed  Google Scholar 

  10. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  PubMed  Google Scholar 

  11. Blau HM, Chiu CP, Webster C (1983) Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32:1171–1180

    Article  CAS  PubMed  Google Scholar 

  12. Shefer G, Yablonka-Reuveni Z (2005) Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol Biol 290:281–304

    PubMed  PubMed Central  Google Scholar 

  13. Danoviz ME, Yablonka-Reuveni Z (2012) Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol Biol 798:21–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kummer TT, Misgeld T, Lichtman JW, Sanes JR (2004) Nerve-independent formation of a topologically complex postsynaptic apparatus. J Cell Biol 164:1077–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cooper ST, Maxwell AL, Kizana E, Ghoddusi M, Hardeman EC, Alexander IE, Allen DG, North KN (2004) C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with peripheral nuclei and adult fast myosin expression. Cell Motil Cytoskeleton 58:200–211

    Article  CAS  PubMed  Google Scholar 

  16. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2003) Enhanced myogenic differentiation by extracellular matrix is regulated at the early stages of myogenesis. In Vitro Cell Dev Biol Anim 39:163–169

    Article  CAS  PubMed  Google Scholar 

  17. Challis JH (1995) A procedure for determining rigid body transformation parameters. J Biomech 28:733–737

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (P01 GM087253 to E.L.F.H., T32 GM-07229, and T32 AR-053461 to M.H.W.) and the American Heart Association (#13PRE16090007 to M.H.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika L. F. Holzbaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wilson, M.H., Bray, M.G., Holzbaur, E.L.F. (2016). Methods for Assessing Nuclear Rotation and Nuclear Positioning in Developing Skeletal Muscle Cells. In: Shackleton, S., Collas, P., Schirmer, E. (eds) The Nuclear Envelope. Methods in Molecular Biology, vol 1411. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3530-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3530-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3528-4

  • Online ISBN: 978-1-4939-3530-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics