High-Throughput Quantitative Proteomics Enabled by Mass Defect-Based 12-Plex DiLeu Isobaric Tags

Part of the Methods in Molecular Biology book series (MIMB, volume 1410)


Isobaric labeling has become a popular technique for high-throughput, mass spectrometry (MS)-based relative quantification of peptides and proteins. However, widespread use of the approach for large-scale proteomics applications has been limited by the high cost of commercial isobaric tags. To address this, we have developed our own N,N-dimethyl leucine (DiLeu) multiplex isobaric tags as a cost-effective alternative that can be synthesized with ease using readily available isotopic reagents. When paired with high-resolution tandem mass (MS n ) acquisition, mass defect-based DiLeu isobaric tags allow relative quantification of up to twelve samples in a single liquid chromatography (LC)–MS2 experiment. Herein, we present detailed methods for synthesis of 12-plex DiLeu isobaric tags, labeling of complex protein digest samples, analysis by high-resolution nanoLC–MS n , and processing of acquired data.

Key words

Quantitative proteomics Isobaric labeling DiLeu High-resolution mass spectrometry Mass defect Isobaric tag synthesis Multiplexed quantitation 



The authors acknowledge support for this work by the National Institutes of Health grant (1R01DK071801). The Q-Exactive Orbitrap was purchased through the support of an NIH-shared instrument grant (NIH-NCRR S10RR029531). L.L. acknowledges an H.I. Romnes Faculty Research Fellowship.


  1. 1.
    Ong S-E, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386. doi: 10.1074/mcp.M200025-MCP200 Google Scholar
  2. 2.
    Molina H, Yang Y, Ruch T et al (2009) Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J Proteome Res 8:48–58. doi: 10.1021/pr800650r PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Hsu J-L, Huang S-Y, Chow N-H, Chen S-H (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852. doi: 10.1021/ac0348625 CrossRefPubMedGoogle Scholar
  4. 4.
    Ji C, Guo N, Li L (2005) Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. J Proteome Res 4:2099–2108. doi: 10.1021/pr050215d CrossRefPubMedGoogle Scholar
  5. 5.
    Boersema PJ, Raijmakers R, Lemeer S et al (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494. doi: 10.1038/nprot.2009.21 CrossRefPubMedGoogle Scholar
  6. 6.
    Wu Y, Wang F, Liu Z et al (2014) Five-plex isotope dimethyl labeling for quantitative proteomics. Chem Commun 50:1708. doi: 10.1039/c3cc47998f CrossRefGoogle Scholar
  7. 7.
    Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169. doi: 10.1074/mcp.M400129-MCP200 CrossRefPubMedGoogle Scholar
  8. 8.
    Choe L, D'Ascenzo M, Relkin NR et al (2007) 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease. Proteomics 7:3651–3660. doi: 10.1002/pmic.200700316 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Thompson A, Schäfer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904. doi: 10.1021/ac0262560 CrossRefPubMedGoogle Scholar
  10. 10.
    Dayon L, Hainard A, Licker V et al (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80:2921–2931. doi: 10.1021/ac702422x CrossRefPubMedGoogle Scholar
  11. 11.
    Werner T, Becher I, Sweetman G et al (2012) High-resolution enabled TMT 8-plexing. Anal Chem 84:7188–7194. doi: 10.1021/ac301553x CrossRefPubMedGoogle Scholar
  12. 12.
    McAlister GC, Huttlin EL, Haas W et al (2012) Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem 84:7469–7478. doi: 10.1021/ac301572t PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Viner R, Blank M, Bomgarden R, Rogers R (2013) Increasing the multiplexing of protein quantitation from 6- to 10-plex with reporter ion isotopologues. Thermo Scientific Technical Note 1–7.
  14. 14.
    Xiang F, Ye H, Chen R et al (2010) N, N-dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics. Anal Chem 82:2817–2825. doi: 10.1021/ac902778d PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Hsu J-L, Huang S-Y, Shiea J-T et al (2005) Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J Proteome Res 4:101–108. doi: 10.1021/pr049837 CrossRefPubMedGoogle Scholar
  16. 16.
    Fu Q, Li L (2005) De novo sequencing of neuropeptides using reductive isotopic methylation and investigation of ESI QTOF MS/MS fragmentation pattern of neuropeptides with N-terminal dimethylation. Anal Chem 77:7783–7795. doi: 10.1021/ac051324e CrossRefPubMedGoogle Scholar
  17. 17.
    Hui L, Xiang F, Zhang Y, Li L (2012) Mass spectrometric elucidation of the neuropeptidome of a crustacean neuroendocrine organ. Peptides 36:230–239. doi: 10.1016/j.peptides.2012.05.007 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Frost DC, Greer T, Li L (2015) High-resolution enabled 12-plex DiLeu isobaric tags for quantitative proteomics. Anal Chem 87:1646–1654. doi: 10.1021/ac503276z PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Shadforth IP, Dunkley TPJ, Lilley KS, Bessant C (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6:145. doi: 10.1186/1471-2164-6-145 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Greer T, Lietz CB, Xiang F, Li L (2014) Novel isotopic N N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach. J Am Soc Mass Spectrom. doi: 10.1007/s13361-014-1012-y PubMedCentralPubMedGoogle Scholar
  21. 21.
    Bantscheff M, Boesche M, Eberhard D et al (2008) Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol Cell Proteomics 7:1702–1713. doi: 10.1074/mcp.M800029-MCP200 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Ow SY, Salim M, Noirel J et al (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8:5347–5355. doi: 10.1021/pr900634c CrossRefPubMedGoogle Scholar
  23. 23.
    Karp NA, Huber W, Sadowski PG et al (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9:1885–1897. doi: 10.1074/mcp.M900628-MCP200 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Altelaar AFM, Frese CK, Preisinger C et al (2013) Benchmarking stable isotope labeling based quantitative proteomics. J Proteomics 88:14–26. doi: 10.1016/j.jprot.2012.10.009 CrossRefPubMedGoogle Scholar
  25. 25.
    Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Meth 8:937–940. doi: 10.1038/nmeth.1714 CrossRefGoogle Scholar
  26. 26.
    McAlister GC, Nusinow DP, Jedrychowski MP et al (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150–7158. doi: 10.1021/ac502040v PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Krokhin OV, Antonovici M, Ens W et al. Deamidation of -Asn-Gly- sequences during sample preparation for proteomics: consequences for MALDI and HPLC-MALDI analysis. Anal Chem 78:6645–6650. doi: 10.1021/ac061017o Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of PharmacyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations