Advertisement

Optogenetics pp 125-139 | Cite as

Optogenetics in Plants: Red/Far-Red Light Control of Gene Expression

  • Rocio Ochoa-Fernandez
  • Sophia L. Samodelov
  • Simon M. Brandl
  • Elke Wehinger
  • Konrad Müller
  • Wilfried Weber
  • Matias D. ZurbriggenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)

Abstract

Optogenetic tools to control gene expression have many advantages over the classical chemically inducible systems, overcoming intrinsic limitations of chemical inducers such as solubility, diffusion, and cell toxicity. They offer an unmatched spatiotemporal resolution and permit quantitative and noninvasive control of the gene expression. Here we describe a protocol of a synthetic light-inducible system for the targeted control of gene expression in plants based on the plant photoreceptor phytochrome B and one of its interacting factors (PIF6). The synthetic toggle switch system is in the ON state when plant protoplasts are illuminated with red light (660 nm) and can be returned to the OFF state by subsequent illumination with far-red light (760 nm). In this protocol, the implementation of a red light-inducible expression system in plants using Light-Emitting Diode (LED) illumination boxes is described, including the isolation and transient transformation of plant protoplasts from Arabidopsis thaliana and Nicotiana tabacum.

Key words

Plant synthetic biology Plant optogenetics Red light-inducible gene expression system Plant leaf protoplasts Arabidopsis thaliana Nicotiana tabacum 

Notes

Acknowledgments

This work was supported in part by the Excellence Initiative of the German Federal and State Governments (EXC294-BIOSS, GSC-4 Spemann Graduate School (SGBM)) and the Alexander von Humbolt Foundation (research Grant no. 1141629). We thank Susanne Knall and Frauke Bartels-Burgahn for experimental assistance. We thank J. Schmidt, D. Schächtele and J. Meßmer (University of Freiburg) for designing and constructing the illumination boxes.

References

  1. 1.
    Corrado G, Karali M (2009) Inducible gene expression systems and plant biotechnology. Biotechnol Adv 27(6):733–743CrossRefPubMedGoogle Scholar
  2. 2.
    Junker A, Junker B (2012) Synthetic gene networks in plant systems. In: Weber W, Fussenegger M (eds) Synthetic gene networks, vol 813, Methods in molecular biology. Humana, New York, pp 343–358CrossRefGoogle Scholar
  3. 3.
    Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6(2):169–177CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang K, Cui B (2015) Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33(2):92–100CrossRefPubMedGoogle Scholar
  5. 5.
    Müller K, Naumann S, Weber W, Zurbriggen MD (2015) Optogenetics for gene expression in mammalian cells. Biol Chem 396(2):145–152CrossRefPubMedGoogle Scholar
  6. 6.
    Müller K, Siegel D, Rodriguez Jahnke F, Gerrer K, Wend S, Decker EL, Reski R, Weber W, Zurbriggen MD (2014) A red light-controlled synthetic gene expression switch for plant systems. Mol BioSyst 10(7):1679–1688CrossRefPubMedGoogle Scholar
  7. 7.
    Dovzhenko A, Bergen U, Koop HU (1998) Thin-alginate-layer technique for protoplast culture of tobacco leaf protoplasts: shoot formation in less than two weeks. Protoplasma 204(1-2):114–118CrossRefGoogle Scholar
  8. 8.
    Dovzhenko A, Dal Bosco C, Meurer J, Koop HU (2003) Efficient regeneration from cotyledon protoplasts in Arabidopsis thaliana. Protoplasma 222(1–2):107–111CrossRefPubMedGoogle Scholar
  9. 9.
    Luo Y, Koop H-U (1997) Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta 202(3):387–396CrossRefPubMedGoogle Scholar
  10. 10.
    Menczel L, Galiba G, Nagy F, Maliga P (1982) Effect of radiation dosage on efficiency of chloroplast transfer by protoplast fusion in nicotiana. Genetics 100(3):487–495PubMedPubMedCentralGoogle Scholar
  11. 11.
    Müller K, Zurbriggen MD, Weber W (2014) Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch. Nat Protoc 9(3):622–632CrossRefPubMedGoogle Scholar
  12. 12.
    Müller K, Engesser R, Metzger S, Schulz S, Kämpf MM, Busacker M, Steinberg T, Tomakidi P, Ehrbar M, Nagy F, Timmer J, Zubriggen MD, Weber W (2013) A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res 41(7):e77CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Koop H-U, Steinmüller K, Wagner H, Rößler C, Eibl C, Sacher L (1996) Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta 199(2):193–201CrossRefPubMedGoogle Scholar
  14. 14.
    Wend S, Bosco CD, Kämpf MM, Ren F, Palme K, Weber W, Dovzhenko A, Zurbriggen MD (2013) A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics. Sci Rep 3:2052CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rocio Ochoa-Fernandez
    • 1
    • 2
  • Sophia L. Samodelov
    • 1
    • 3
  • Simon M. Brandl
    • 4
  • Elke Wehinger
    • 4
  • Konrad Müller
    • 4
    • 5
  • Wilfried Weber
    • 3
    • 4
    • 6
  • Matias D. Zurbriggen
    • 1
    • 4
    Email author
  1. 1.Institute of Synthetic BiologyUniversity of DüsseldorfDüsseldorfGermany
  2. 2.iGRAD Plant International Graduate Program for Plant ScienceUniversity of DüsseldorfDüsseldorfGermany
  3. 3.Spemann Graduate School of Biology and Medicine (SGBM)University of FreiburgFreiburgGermany
  4. 4.Faculty of BiologyUniversity of FreiburgFreiburgGermany
  5. 5.Novartis Pharma AGBiologics Process R&DBaselSwitzerland
  6. 6.BIOSS - Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany

Personalised recommendations