Skip to main content

A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators

  • Protocol
  • First Online:
Optogenetics

Abstract

As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  3. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102:17816–17821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang F, Wang L-P, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  7. Schröder-Lang S, Schwärzel M, Seifert R, Strünker T, Kateriya S, Looser J, Watanabe M, Kaupp UB, Hegemann P, Nagel G (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4:39–42

    Article  PubMed  Google Scholar 

  8. Ryu M-H, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285:41501–41508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stierl M, Stumpf P, Udwari D et al (2011) Light-modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium beggiatoa. J Biol Chem 286:1181–1188

    Article  CAS  PubMed  Google Scholar 

  10. Raffelberg S, Wang L, Gao S, Losi A, Gärtner W, Nagel G (2013) A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium Microcoleus chthonoplastes PCC 7420. Biochem J 455:359–365

    Article  CAS  PubMed  Google Scholar 

  11. Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Möglich A, Moffat K (2010) Engineered photoreceptors as novel optogenetic tools. Photochem Photobiol Sci 9:1286–1300

    Article  PubMed  Google Scholar 

  13. Gasser CF, Taiber S, Yeh C-M, Wittig CH, Hegemann P, Ryu S, Wunder F, Möglich A (2014) Engineering a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc Natl Acad Sci U S A 111:8803–8808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryu M-H, Kang I-H, Nelson MD, Jensen TM, Lyuksyutova AI, Siltberg-Liberles J, Raizen DM, Gomelsky M (2014) Engineering adenylate cyclases regulated by near-infrared window light. Proc Natl Acad Sci U S A 111:10167–10172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hughes J, Lamparter T, Mittmann F, Hartmann E, Gärtner W, Wilde A, Börner T (1997) A prokaryotic phytochrome. Nature 386:663

    Article  CAS  PubMed  Google Scholar 

  16. Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS (2009) Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci U S A 106:18225–18230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95:189–196

    Article  CAS  PubMed  Google Scholar 

  19. Boens N, Qin W, Basarić N, Orte A, Talavera EM, Alvarez-Pez JM (2006) Photophysics of the fluorescent pH indicator BCECF. J Phys Chem A 110:9334–9343

    Article  CAS  PubMed  Google Scholar 

  20. Richter F, Scheib US, Mehlhorn J, Schubert R, Wietek J, Gernetzki O, Hegemann P, Mathes T, Möglich A (2015) Upgrading a microplate reader for photobiology and all-optical experiments. Photochem Photobiol Sci 14:270–279

    Article  CAS  PubMed  Google Scholar 

  21. Boess FG, Hendrix M, van der Staay F-J, Erb C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland A, Koenig G (2004) Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 47:1081–1092

    Article  CAS  PubMed  Google Scholar 

  22. Gomelsky M (2011) cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all! Mol Microbiol 79:562–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support by the Cluster of Excellence in Catalysis ‘Unicat’ (A.M.) of the Deutsche Forschungsgemeinschaft (DFG), through a Sofja-Kovalevskaya Award by the Alexander-von-Humboldt Foundation (A.M.), by the Caesar institute (H.G.K. and R.S.) as well as by a Heisenberg Fellowship by the DFG (M.S.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Möglich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schumacher, C.H. et al. (2016). A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators. In: Kianianmomeni, A. (eds) Optogenetics. Methods in Molecular Biology, vol 1408. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3512-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3512-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3510-9

  • Online ISBN: 978-1-4939-3512-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics