Optogenetics pp 93-105 | Cite as

A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators

  • Charlotte Helene Schumacher
  • Heinz G. Körschen
  • Christopher Nicol
  • Carlos Gasser
  • Reinhard Seifert
  • Martin Schwärzel
  • Andreas MöglichEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)


As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism.

Key words

BCECF bPAC Cyclic nucleotide monophosphate cNMP phosphodiesterase LAPD Microtiter plate Nucleotide cyclase Optogenetics Sensory photoreceptor 



Financial support by the Cluster of Excellence in Catalysis ‘Unicat’ (A.M.) of the Deutsche Forschungsgemeinschaft (DFG), through a Sofja-Kovalevskaya Award by the Alexander-von-Humboldt Foundation (A.M.), by the Caesar institute (H.G.K. and R.S.) as well as by a Heisenberg Fellowship by the DFG (M.S.) is gratefully acknowledged.


  1. 1.
    Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398CrossRefPubMedGoogle Scholar
  3. 3.
    Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268CrossRefPubMedGoogle Scholar
  5. 5.
    Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102:17816–17821CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang F, Wang L-P, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639CrossRefPubMedGoogle Scholar
  7. 7.
    Schröder-Lang S, Schwärzel M, Seifert R, Strünker T, Kateriya S, Looser J, Watanabe M, Kaupp UB, Hegemann P, Nagel G (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4:39–42CrossRefPubMedGoogle Scholar
  8. 8.
    Ryu M-H, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285:41501–41508CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Stierl M, Stumpf P, Udwari D et al (2011) Light-modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium beggiatoa. J Biol Chem 286:1181–1188CrossRefPubMedGoogle Scholar
  10. 10.
    Raffelberg S, Wang L, Gao S, Losi A, Gärtner W, Nagel G (2013) A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium Microcoleus chthonoplastes PCC 7420. Biochem J 455:359–365CrossRefPubMedGoogle Scholar
  11. 11.
    Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Möglich A, Moffat K (2010) Engineered photoreceptors as novel optogenetic tools. Photochem Photobiol Sci 9:1286–1300CrossRefPubMedGoogle Scholar
  13. 13.
    Gasser CF, Taiber S, Yeh C-M, Wittig CH, Hegemann P, Ryu S, Wunder F, Möglich A (2014) Engineering a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc Natl Acad Sci U S A 111:8803–8808CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ryu M-H, Kang I-H, Nelson MD, Jensen TM, Lyuksyutova AI, Siltberg-Liberles J, Raizen DM, Gomelsky M (2014) Engineering adenylate cyclases regulated by near-infrared window light. Proc Natl Acad Sci U S A 111:10167–10172CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hughes J, Lamparter T, Mittmann F, Hartmann E, Gärtner W, Wilde A, Börner T (1997) A prokaryotic phytochrome. Nature 386:663CrossRefPubMedGoogle Scholar
  16. 16.
    Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS (2009) Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci U S A 106:18225–18230CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95:189–196CrossRefPubMedGoogle Scholar
  19. 19.
    Boens N, Qin W, Basarić N, Orte A, Talavera EM, Alvarez-Pez JM (2006) Photophysics of the fluorescent pH indicator BCECF. J Phys Chem A 110:9334–9343CrossRefPubMedGoogle Scholar
  20. 20.
    Richter F, Scheib US, Mehlhorn J, Schubert R, Wietek J, Gernetzki O, Hegemann P, Mathes T, Möglich A (2015) Upgrading a microplate reader for photobiology and all-optical experiments. Photochem Photobiol Sci 14:270–279CrossRefPubMedGoogle Scholar
  21. 21.
    Boess FG, Hendrix M, van der Staay F-J, Erb C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland A, Koenig G (2004) Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 47:1081–1092CrossRefPubMedGoogle Scholar
  22. 22.
    Gomelsky M (2011) cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all! Mol Microbiol 79:562–565CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Charlotte Helene Schumacher
    • 1
  • Heinz G. Körschen
    • 2
  • Christopher Nicol
    • 3
  • Carlos Gasser
    • 1
  • Reinhard Seifert
    • 2
  • Martin Schwärzel
    • 3
  • Andreas Möglich
    • 1
    • 4
    Email author
  1. 1.Institut für Biologie, Biophysikalische ChemieHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Molecular Sensory SystemsResearch Center CaesarBonnGermany
  3. 3.Institut für Biologie, NeurobiologieFreie Universität BerlinBerlinGermany
  4. 4.Faculty of Biology, Chemistry and Earth Sciences, Lehrstuhl für BiochemieUniversität BayreuthBayreuthGermany

Personalised recommendations