Skip to main content

Reversible Photoregulation of Gene Expression and Translation

  • Protocol
  • First Online:
Optogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1408))

  • 4727 Accesses

Abstract

Several methods for controlling gene expression by light illumination have been reported. Most of these methods control transcription by regulating the interaction between DNA and transcription factors. The use of a photolabile protecting compound (cage compound) is another promising approach for controlling gene expression, although typically in an irreversible manner. We here describe a new approach for reversibly controlling translation using a photoresponsive 8-styryl cap (8ST-cap) that can be reversibly isomerized by illumination with light of a specific wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirata H, Bessho Y, Kokubu H, Masamizu Y, Yamada S, Lewis J, Kageyama R (2004) Instability of Hes7 protein is crucial for the somite segmentation clock. Nat Genet 36:750–754

    Article  CAS  PubMed  Google Scholar 

  2. Driever W, Volhard CN (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93

    Article  CAS  PubMed  Google Scholar 

  3. Polstein LR, Gersbach CA (2012) Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 134:16480–16483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9:266–269

    Article  CAS  PubMed  Google Scholar 

  5. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7:973–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009) Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27:941–945

    Article  CAS  PubMed  Google Scholar 

  7. Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438:441–442

    Article  CAS  PubMed  Google Scholar 

  8. Hemphill J, Liu Q, Uprety R, Samanta S, Tsang M, Juliano RL, Deiters A (2015) Conditional control of alternative splicing through light-triggered splice-switching oligonucleotides. J Am Chem Soc 137:3656–3662

    Article  CAS  PubMed  Google Scholar 

  9. Yamazoe S, Liu Q, McQuande LE, Deiters A, Chen JK (2014) Sequential gene silencing using wavelength-selective caged morpholino oligonucleotides. Angew Chem Int Ed 53:10114–10118

    Article  CAS  Google Scholar 

  10. Wu L, Wang Y, Wu J, Lv C, Wang J, Tang X (2013) Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells. Nucleic Acids Res 41:677–686

    Article  CAS  PubMed  Google Scholar 

  11. Shestopalov IA, Sinha S, Chen J (2007) Light-controlled gene silencing in zebrafish embryos. Nat Chem Biol 3:650–651

    Article  CAS  PubMed  Google Scholar 

  12. Ando H, Furuta T, Tsien RY, Okamoto H (2001) Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet 28:317–325

    Article  CAS  PubMed  Google Scholar 

  13. Ogasawara S, Maeda M (2009) Reversible photoswitching of a G-quadruplex. Angew Chem Int Ed 48:6671–6674

    Article  CAS  Google Scholar 

  14. Ogasawara S, Maeda M (2008) Straightforward and reversible photoregulation of hybridization using photochromic nucleoside. Angew Chem Int Ed 47:8839–8842

    Article  CAS  Google Scholar 

  15. Ogasawara S, Saito I, Maeda M (2008) Synthesis and reversible photoisomerization of photoswitchable nucleoside, 8-styryl-2′-deoxyguanosine. Tetrahedron Lett 49:2479–2482

    Article  CAS  Google Scholar 

  16. Jemielity J, Fowler T, Zuberek J, Stepinski J, Lewdorowicz M, Niedzwiecka A, Stolarski R, Darzynkiewicz E, Rhoads RE (2003) Novel “anti-reverse” cap analogs with superior translation properties. RNA 9:1108–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present work was supported by Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) and JSPS KAKENHI Grant Number 25104526.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinzi Ogasawara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ogasawara, S. (2016). Reversible Photoregulation of Gene Expression and Translation. In: Kianianmomeni, A. (eds) Optogenetics. Methods in Molecular Biology, vol 1408. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3512-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3512-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3510-9

  • Online ISBN: 978-1-4939-3512-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics