Reversible Photoregulation of Gene Expression and Translation

  • Shinzi OgasawaraEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)


Several methods for controlling gene expression by light illumination have been reported. Most of these methods control transcription by regulating the interaction between DNA and transcription factors. The use of a photolabile protecting compound (cage compound) is another promising approach for controlling gene expression, although typically in an irreversible manner. We here describe a new approach for reversibly controlling translation using a photoresponsive 8-styryl cap (8ST-cap) that can be reversibly isomerized by illumination with light of a specific wavelength.

Key words

mRNA Translation Cap structure Photoisomerization 



The present work was supported by Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) and JSPS KAKENHI Grant Number 25104526.


  1. 1.
    Hirata H, Bessho Y, Kokubu H, Masamizu Y, Yamada S, Lewis J, Kageyama R (2004) Instability of Hes7 protein is crucial for the somite segmentation clock. Nat Genet 36:750–754CrossRefPubMedGoogle Scholar
  2. 2.
    Driever W, Volhard CN (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93CrossRefPubMedGoogle Scholar
  3. 3.
    Polstein LR, Gersbach CA (2012) Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 134:16480–16483CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9:266–269CrossRefPubMedGoogle Scholar
  5. 5.
    Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7:973–975CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009) Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27:941–945CrossRefPubMedGoogle Scholar
  7. 7.
    Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438:441–442CrossRefPubMedGoogle Scholar
  8. 8.
    Hemphill J, Liu Q, Uprety R, Samanta S, Tsang M, Juliano RL, Deiters A (2015) Conditional control of alternative splicing through light-triggered splice-switching oligonucleotides. J Am Chem Soc 137:3656–3662CrossRefPubMedGoogle Scholar
  9. 9.
    Yamazoe S, Liu Q, McQuande LE, Deiters A, Chen JK (2014) Sequential gene silencing using wavelength-selective caged morpholino oligonucleotides. Angew Chem Int Ed 53:10114–10118CrossRefGoogle Scholar
  10. 10.
    Wu L, Wang Y, Wu J, Lv C, Wang J, Tang X (2013) Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells. Nucleic Acids Res 41:677–686CrossRefPubMedGoogle Scholar
  11. 11.
    Shestopalov IA, Sinha S, Chen J (2007) Light-controlled gene silencing in zebrafish embryos. Nat Chem Biol 3:650–651CrossRefPubMedGoogle Scholar
  12. 12.
    Ando H, Furuta T, Tsien RY, Okamoto H (2001) Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet 28:317–325CrossRefPubMedGoogle Scholar
  13. 13.
    Ogasawara S, Maeda M (2009) Reversible photoswitching of a G-quadruplex. Angew Chem Int Ed 48:6671–6674CrossRefGoogle Scholar
  14. 14.
    Ogasawara S, Maeda M (2008) Straightforward and reversible photoregulation of hybridization using photochromic nucleoside. Angew Chem Int Ed 47:8839–8842CrossRefGoogle Scholar
  15. 15.
    Ogasawara S, Saito I, Maeda M (2008) Synthesis and reversible photoisomerization of photoswitchable nucleoside, 8-styryl-2′-deoxyguanosine. Tetrahedron Lett 49:2479–2482CrossRefGoogle Scholar
  16. 16.
    Jemielity J, Fowler T, Zuberek J, Stepinski J, Lewdorowicz M, Niedzwiecka A, Stolarski R, Darzynkiewicz E, Rhoads RE (2003) Novel “anti-reverse” cap analogs with superior translation properties. RNA 9:1108–1122CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Creative Research Institution Sousei (CRIS)Hokkaido UniversitySapporoJapan

Personalised recommendations