Optogenetics pp 377-387 | Cite as

Optogenetic Manipulation of Selective Neural Activity in Free-Moving Drosophila Adults

  • Po-Yen Hsiao
  • Ming-Chin Wu
  • Yen-Yin Lin
  • Chein-Chung Fu
  • Ann-Shyn ChiangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)


Activating selected neurons elicits specific behaviors in Drosophila adults. By combining optogenetics and laser-tracking techniques, we have recently developed an automated laser-tracking and optogenetic manipulation system (ALTOMS) for studying how brain circuits orchestrate complex behaviors. The established ALTOMS can independently target three lasers (473-nm blue laser, 593.5-nm yellow laser, and 1064-nm infrared laser) on any specified body part of two freely moving flies. Triggering light-sensitive proteins in real time, the blue laser and yellow laser can respectively activate and inhibit target neurons in artificial transgenic flies. Since infrared light is invisible to flies, we use the 1064-nm laser as an aversive stimulus in operant learning without perturbing visual inputs. Herein, we provide a detailed protocol for the construction of ALTOMS and optogenetic manipulation of target neurons in Drosophila adults during social interactions.

Key words

Optogenetics Channelrhodopsin Halorhodopsin Optical stimulation Neural circuit Freely walking Behavior Drosophila 


  1. 1.
    Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci U S A 109(Suppl 1):10661–10668CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Shih CT, Sporns O, Yuan SL, Su TS, Lin YJ, Chuang CC, Wang TY, Lo CC, Greenspan RJ, Chiang AS (2015) Connectomics-based analysis of information flow in the Drosophila brain. Curr Biol 25:1249–1258CrossRefPubMedGoogle Scholar
  3. 3.
    Kaiser M (2015) Neuroanatomy: connectome connects fly and Mammalian brain networks. Curr Biol 25:R416–R418CrossRefPubMedGoogle Scholar
  4. 4.
    Fork RL (1971) Laser stimulation of nerve cells in Aplysia. Science 171:907–908CrossRefPubMedGoogle Scholar
  5. 5.
    Nikolenko V, Poskanzer KE, Yuste R (2007) Two-photon photostimulation and imaging of neural circuits. Nat Methods 4:943–950CrossRefPubMedGoogle Scholar
  6. 6.
    Lima SQ, Miesenbock G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121:141–152CrossRefPubMedGoogle Scholar
  7. 7.
    Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736CrossRefPubMedGoogle Scholar
  8. 8.
    Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159CrossRefPubMedGoogle Scholar
  9. 9.
    Lin HH, Chu LA, Fu TF, Dickson BJ, Chiang AS (2013) Parallel neural pathways mediate CO2 avoidance responses in Drosophila. Science 340:1338–1341CrossRefPubMedGoogle Scholar
  10. 10.
    Yang CH, Belawat P, Hafen E, Jan LY, Jan YN (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319:1679–1683CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wu MC, Chu LA, Hsiao PY, Lin YY, Chi CC, Liu TH, Fu CC, Chiang AS (2014) Optogenetic control of selective neural activity in multiple freely moving Drosophila adults. Proc Natl Acad Sci U S A 111:5367–5372CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bath DE, Stowers JR, Hormann D, Poehlmann A, Dickson BJ, Straw AD (2014) FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila. Nat Methods 11:756–762CrossRefPubMedGoogle Scholar
  13. 13.
    Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639CrossRefPubMedGoogle Scholar
  16. 16.
    Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Suh GS, Ben-Tabou de Leon S, Tanimoto H, Fiala A, Benzer S, Anderson DJ (2007) Light activation of an innate olfactory avoidance response in Drosophila. Curr Biol 17:905–908CrossRefPubMedGoogle Scholar
  20. 20.
    de Vries SE, Clandinin TR (2012) Loom-sensitive neurons link computation to action in the Drosophila visual system. Curr Biol 22:353–362CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, Tsien RY, Anderson DJ (2014) Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11:325–332CrossRefPubMedGoogle Scholar
  22. 22.
    Keene AC, Masek P (2012) Optogenetic induction of aversive taste memory. Neuroscience 222:173–180CrossRefPubMedGoogle Scholar
  23. 23.
    Haikala V, Joesch M, Borst A, Mauss AS (2013) Optogenetic control of fly optomotor responses. J Neurosci 33:13927–13934CrossRefPubMedGoogle Scholar
  24. 24.
    Lin YY, Wu MC, Hsiao PY, Chu LA, Yang MM, Fu CC, Chiang AS (2015) Three-wavelength light control of freely moving Drosophila Melanogaster for less perturbation and efficient social-behavioral studies. Biomed Opt Express 6:514–523CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Po-Yen Hsiao
    • 1
  • Ming-Chin Wu
    • 2
  • Yen-Yin Lin
    • 2
    • 3
    • 4
  • Chein-Chung Fu
    • 3
    • 5
    • 6
  • Ann-Shyn Chiang
    • 1
    • 2
    • 7
    • 8
    Email author
  1. 1.Institute of BiotechnologyNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Brain Research CenterNational Tsing Hua UniversityHsinchuTaiwan
  3. 3.Institute of Photonics TechnologiesNational Tsing Hua UniversityHsinchuTaiwan
  4. 4.Department of Electrical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  5. 5.Department of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  6. 6.Institute of Nanotechnology and Microsystems EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  7. 7.Genomics Research CenterAcademia SinicaTaipeiTaiwan
  8. 8.Kavli Institute for Brain and MindUniversity of California, San DiegoLa JollaUSA

Personalised recommendations