Advertisement

Optogenetics pp 345-362 | Cite as

Optogenetic Control of Fibroblast Growth Factor Receptor Signaling

  • Nury Kim
  • Jin Man Kim
  • Won Do HeoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)

Abstract

FGFR1 is a member of the fibroblast growth factor family, which controls diverse cellular functions such as cell proliferation, migration, and differentiation. OptoFGFR1, an optogenetic method to modulate the FGFR signaling pathway with light by utilizing PHR domain of cryptochrome2 and cytoplasmic region of FGFR1, enabled light-guided activation of FGFR to study its effects on downstream signaling pathway and during diverse biological processes such as cell migration. Here, we describe about optogenetic and microscopic methods to spatiotemporally manipulate FGFR signaling in a single cell or group of cells using confocal microscope and LED array.

Key words

FGFR optoFGFR1 Optogenetics Spatiotemporal regulation Signaling pathway Migration Live cell imaging 

References

  1. 1.
    Pryciak PM (2009) Designing new cellular signaling pathways. Chem Biol 16:249–254. doi: 10.1016/j.chembiol.2009.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lim WA (2010) Designing customized cell signalling circuits. Nat Rev Mol Cell Biol 11:393–403. doi: 10.1038/nrm2904 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134. doi: 10.1016/j.cell.2010.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi: 10.1016/j.yane.2012.02.046 CrossRefPubMedGoogle Scholar
  5. 5.
    Klemm JD, Schreiber SL, Crabtree GR (1998) Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol 16:569–592. doi: 10.1146/annurev.immunol.16.1.569 CrossRefPubMedGoogle Scholar
  6. 6.
    Van Stry M, Kazlauskas A, Schreiber SL, Symes K (2005) Distinct effectors of platelet-derived growth factor receptor-α signaling are required for cell survival during embryogenesis. Proc Natl Acad Sci U S A 102:8233–8238CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hofman EG, Bader AN, Voortman J et al (2010) Ligand-induced EGF receptor oligomerization is kinase-dependent and enhances internalization. J Biol Chem 285:39481–39489. doi: 10.1074/jbc.M110.164731 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Welm BE, Freeman KW, Chen M et al (2002) Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland. J Cell Biol 157:703–714. doi: 10.1083/jcb.200107119 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Toettcher JE, Weiner OD, Lim WA (2013) Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155:1422–1434. doi: 10.1016/j.cell.2013.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tischer D, Weiner OD (2014) Illuminating cell signalling with optogenetic tools. Nat Rev Mol Cell Biol 15:551–558. doi: 10.1038/nrm3837 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bugaj LJ, Choksi AT, Mesuda CK et al (2013) Optogenetic protein clustering and signaling activation in mammalian cells. Nat Methods 10:249–252. doi: 10.1038/nmeth.2360 CrossRefPubMedGoogle Scholar
  12. 12.
    Kim N, Kim JM, Lee M et al (2014) Spatiotemporal control of fibroblast growth factor receptor signals by blue light. Chem Biol 21:903–912. doi: 10.1016/j.chembiol.2014.05.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Chang K-Y, Woo D, Jung H et al (2014) Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling. Nat Commun 5:4057. doi: 10.1038/ncomms5057 PubMedGoogle Scholar
  14. 14.
    Kennedy MJ, Hughes RM, Peteya LA et al (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7:973–975. doi: 10.1038/nmeth.1524 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhao Y, Araki S, Wu J et al (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–1891. doi: 10.1126/science.1208592 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62. doi: 10.1038/nature06293 CrossRefPubMedGoogle Scholar
  17. 17.
    Riedl J, Crevenna AH, Kessenbrock K et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607. doi: 10.1038/nmeth.1220 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shcherbakova DM, Verkhusha VV (2013) Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10:751–754. doi: 10.1038/nmeth.2521 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Center for Cognition and SocialityInstitute for Basic ScienceSeoulRepublic of Korea
  2. 2.Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  3. 3.Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations