Optogenetics pp 333-344 | Cite as

A Multichannel Recording System with Optical Stimulation for Closed-Loop Optogenetic Experiments

  • Carmen BarticEmail author
  • Francesco P. Battaglia
  • Ling Wang
  • Thoa T. Nguyen
  • Henrique Cabral
  • Zaneta Navratilova
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)


Selective perturbation of the activity of specific cell types in the brain tissue is essential in understanding the function of neuronal circuits involved in cognition and behavior and might also provide therapeutic neuromodulation strategies. Such selective neuronal addressing can be achieved through the optical activation of light-sensitive proteins called opsins that are expressed in specific cell populations through genetic methods—hence the name “optogenetics.” In optogenetic experiments, the electrical activity of the targeted cell populations is optically triggered and monitored using arrays of microelectrodes. In closed-loop studies, the optical stimulation parameters are adjusted based on the recorded activity, ideally in real time. Here we describe the basic tools and the protocols allowing closed-loop optogenic experiments in vivo.

Key words

Optical stimulation Closed-loop Multichannel recordings Tetrode Optic fibers Spike-sorting 



The authors thank Prof. Veerle Baekelandt and Dr. Chris Van den Haute for providing the viral vectors used in this work. We thank Mr. Valentijn Tuts for helping with the PCB assembly and custom cables. We thank Dr. Fabian Kloosterman at NERF for assistance and suggestions on the design of the tetrode micro-drive.

These methods and protocols have been developed within the frame of the FP7 EC project ENLIGHTENMENT. The project ENLIGHTENMENT acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission


  1. 1.
    Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71(1):9–34CrossRefPubMedGoogle Scholar
  2. 2.
    Knopfel T, Boyden ES (2012) Optogenetics: tools for controlling and monitoring neuronal activity. Prog Brain Res 196:2–278Google Scholar
  3. 3.
    Kloosterman F, Davidson TJ, Gomperts SN, Layton SP, Hale G, Nguyen DP, Wilson MA (2009) Micro-drive array for chronic in vivo recording: drive fabrication. J Vis Exp (26):e1094. doi:10.3791/1094Google Scholar
  4. 4.
    Anikeeva P, Andalman AS, Witten I, Warden M, Goshen I, Grosenick L, Gunaydin LA, Frank LM, Deisseroth K (2012) Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat Neurosci 15:163–170CrossRefGoogle Scholar
  5. 5.
    Wu F, Stark E, Im M, Cho I-J, Yoon E-S, Buzsáki G, Wise KD, Yoon E (2013) An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J Neural Eng 10(5):056012CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tass PA, Klosterkötter J, Schneider F, Lenartz D, Koulousakis A, Sturm V (2003) Obsessive-compulsive disorder: development of demand-controlled deep brain stimulation with methods from stochastic phase resetting. Neuropsychopharmacology 28(Suppl 1):S27–S34CrossRefPubMedGoogle Scholar
  7. 7.
    Tass PA (2002) Effective desynchronization with bipolar double-pulse stimulation. Phys Rev E Stat Nonlin Soft Matter Phys 66:036226CrossRefPubMedGoogle Scholar
  8. 8.
    Tass PA (2003) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern 89(2):81–88CrossRefPubMedGoogle Scholar
  9. 9.
    Hauptmann C, Popovych O, Tass PA (2007) Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: a modeling study. Expert Rev Med Devices 4(5):633–650CrossRefPubMedGoogle Scholar
  10. 10.
    Jackson A, Mavoori J, Fetz EE (2006) Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444:56–60CrossRefPubMedGoogle Scholar
  11. 11.
    Cerf M, Thiruvengadam N, Mormann F, Kraskov A, Quiroga RQ, Koch C, Fried I (2010) On-line, voluntary control of human temporal lobe neurons. Nature 467:1104–1108CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    de Lavilléon G, Lacroix MM, Rondi-Reig L, Benchenane K (2015) Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat Neurosci 18:493–495CrossRefPubMedGoogle Scholar
  13. 13.
    Paz JP, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16:64–70CrossRefPubMedGoogle Scholar
  14. 14.
    Armstrong C, Krook-Magnuson E, Oijala M, Soltesz I (2013) Closed-loop optogenetic intervention in mice. Nat Protoc 8:1475–1493CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zrenner C, Eytan D, Wallach A, Their P, Marom S (2010) A generic framework for real-time multi-channel neuronal signal analysis, telemetry control, and submillisecond latency feedback generation. Front Neurosci 4:173CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Venkatraman S, Elkabany K, Long JD, Yao Y, Carmena JM (2009) A system for neural recordings and closed-loop intracortical microstimulation in awake rodents. IEEE Trans Biomed Eng 56:15–22CrossRefPubMedGoogle Scholar
  17. 17.
    Sahin M, Durand DM, Haxhiu MA (2000) Closed-loop stimulation of hypoglossal nerve in a dog model of upper airway obstruction. IEEE Trans Biomed Eng 479(7):919–925CrossRefGoogle Scholar
  18. 18.
    Rutishauser U, Schuman EM, Marmelak AN (2006) Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J Neurosci Methods 154:204–224CrossRefPubMedGoogle Scholar
  19. 19.
    Takahashi S, Anzai Y, Sakurai Y (2003) A new approach to spikes sorting for multineuronal activities recorded with a tetrode - how ICA can be practical. Neurosci Res 46:265–272CrossRefPubMedGoogle Scholar
  20. 20.
    Franke F, Natora M, Boucsein C, Munk MH, Obermayer K (2010) An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes. J Comput Neurosci 29:127–148CrossRefPubMedGoogle Scholar
  21. 21.
    Guger C, Gener T, Pennartz CMA, Brotons-Mas JR, Edlinger G, Bermúdez i Badia S, Verschure P, Schaffelhofer S, Sanchez-Vives MV (2011) Real-time position reconstruction with hippocampal place cells. Front Neuroprosthetics 5:85Google Scholar
  22. 22.
    Nguyen TK, Navratilova Z, Cabral H, Wang L, Gielen G, Battaglia FP, Bartic C (2014) Closed-loop optical neural stimulation based on a 32-channel low-noise recording system with online spike sorting. J Neural Eng 11(4):046005CrossRefPubMedGoogle Scholar
  23. 23.
    Wang L, Nguyen TK, Cabral H, Gysbrechts B, Battaglia FP, Bartic C (2014) Closed-loop optical stimulation and recording system with GPU-based real-time spike sorting. In: Popp J, Tuchin V, Matthews D, Pavone F (eds) Biophotonics: photonic solutions for better health care IV: vol. 9129 (91293U-1)Google Scholar
  24. 24.
    Nguyen DP, Layton SP, Hale G, Gomperts SN, Davidson TJ, Kloosterman F, Wilson MA (2009) Micro-drive array for chronic in vivo recording: tetrode assembly. J Vis Exp 26:pii: 1098Google Scholar
  25. 25.
    Quiroga QR (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16(8):1661–1687CrossRefPubMedGoogle Scholar
  26. 26.
    Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsáki G (2000) Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 84(1):401–414PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Carmen Bartic
    • 1
    Email author
  • Francesco P. Battaglia
    • 2
  • Ling Wang
    • 1
  • Thoa T. Nguyen
    • 1
  • Henrique Cabral
    • 2
  • Zaneta Navratilova
    • 2
  1. 1.Department of Physics and AstronomyKU LeuvenHeverleeBelgium
  2. 2.Donders Centre for NeuroscienceRadboud UniversiteitNijmegenThe Netherlands

Personalised recommendations