Advertisement

Optogenetics pp 319-331 | Cite as

Optogenetic Engineering of Atrial Cardiomyocytes

  • Iolanda Feola
  • Alexander Teplenin
  • Antoine A. F. de Vries
  • Daniël A. PijnappelsEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)

Abstract

Optogenetics is emerging in the cardiology field as a new strategy to explore biological functions through the use of light-sensitive proteins and dedicated light sources. For example, this technology allows modification of the electrophysiological properties of cardiac muscle cells with superb spatiotemporal resolution and quantitative control. In this chapter, the optogenetic modification of atrial cardiomyocytes (aCMCs) from 2-day-old Wistar rats using lentiviral vector (LV) technology and the subsequent activation of the light-sensitive proteins (i.e., ion channels) through light-emitting diodes (LEDs) are described.

Key words

Optogenetics Atrial cardiomyocytes Lentiviral vectors Optical mapping Light-emitting diode (LED) 

Notes

Acknowledgement

This work was supported by a VIDI grant (91714336) from the Dutch Organization for Scientific Research (NWO) to Daniël Pijnappels. Antoine de Vries is a recipient of a Chinese Exchange Programme grant (10CDP007) from the Royal Netherlands Academy of Arts and Sciences (KNAW) and received additional support by ICIN-Netherlands Heart Institute.

References

  1. 1.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268CrossRefPubMedGoogle Scholar
  2. 2.
    Entcheva E (2013) Cardiac optogenetics. Am J Physiol Heart Circ Physiol 304:1179–1191CrossRefGoogle Scholar
  3. 3.
    Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900CrossRefPubMedGoogle Scholar
  4. 4.
    Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639CrossRefPubMedGoogle Scholar
  6. 6.
    Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cosentino C, Alberio L, Gazzarrini S, Aquila M, Romano E, Cermenati S, Zuccolini P, Petersen J, Beltrame M, Van Etten JL, Christie JM, Thiel G, Moroni A (2015) Optogenetics. Engineering of a light-gated potassium channel. Science 348:707–710CrossRefPubMedGoogle Scholar
  8. 8.
    Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–412CrossRefPubMedGoogle Scholar
  9. 9.
    Berndt A, Lee SY, Ramakrishnan C, Deisseroth K (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–424CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Müller K, Naumann S, Weber W, Zurbriggen MD (2015) Optogenetics for gene expression in mammalian cells. Biol Chem 396:145–152PubMedGoogle Scholar
  11. 11.
    Beyer HM, Naumann S, Weber W, Radziwill G (2015) Optogenetic control of signaling in mammalian cells. Biotechnol J 10:273–283CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang K, Cui B (2015) Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33:92–100CrossRefPubMedGoogle Scholar
  13. 13.
    Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E (2011) Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci 14:513–518CrossRefPubMedGoogle Scholar
  14. 14.
    Bingen BO, Engels MC, Schalij MJ, Jangsangthong W, Neshati Z, Feola I, Ypey DL, Askar SF, Panfilov AV, Pijnappels DA, de Vries AA (2014) Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc Res 104:194–205CrossRefPubMedGoogle Scholar
  15. 15.
    DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7:379–387CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Askar SF, Ramkisoensing AA, Schalij MJ, Bingen BO, Swildens J, van der Laarse A, de Vries AA, Ypey DL, Pijnappels DA (2011) Antiproliferative treatment of myofibroblasts prevents arrhythmias in vitro by limiting myofibroblast-induced depolarization. Cardiovasc Res 90:295–304CrossRefPubMedGoogle Scholar
  17. 17.
    Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Higashikawa F, Chang L (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280:124–131CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang B, Metharom P, Jullie H, Ellem KA, Cleghorn G, West MJ, Wei MQ (2004) The significance of controlled conditions in lentiviral vector titration and in the use of multiplicity of infection (MOI) for predicting gene transfer events. Genet Vaccines Ther 2:6CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Salva MZ, Himeda CL, Tai PW, Nishiuchi E, Gregorevic P, Allen JM, Finn EE, Nguyen QG, Blankinship MJ, Meuse L, Chamberlain JS, Hauschka SD (2007) Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 15:320–329CrossRefPubMedGoogle Scholar
  21. 21.
    Prasad KM, Xu Y, Yang Z, Acton ST, French BA (2011) Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution. Gene Ther 18:43–52CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Iolanda Feola
    • 1
  • Alexander Teplenin
    • 1
  • Antoine A. F. de Vries
    • 1
    • 2
  • Daniël A. Pijnappels
    • 1
    Email author
  1. 1.Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center LeidenLeiden University Medical CenterLeidenThe Netherlands
  2. 2.ICIN-Netherlands Heart InstituteUtrechtThe Netherlands

Personalised recommendations