Advertisement

Natural Resources for Optogenetic Tools

  • Tilo MathesEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)

Abstract

Photoreceptors are found in all kingdoms of life and mediate crucial responses to environmental challenges. Nature has evolved various types of photoresponsive protein structures with different chromophores and signaling concepts for their given purpose. The abundance of these signaling proteins as found nowadays by (meta-)genomic screens enriched the palette of optogenetic tools significantly. In addition, molecular insights into signal transduction mechanisms and design principles from biophysical studies and from structural and mechanistic comparison of homologous proteins opened seemingly unlimited possibilities for customizing the naturally occurring proteins for a given optogenetic task. Here, a brief overview on the photoreceptor concepts already established as optogenetic tools in natural or engineered form, their photochemistry and their signaling/design principles is given. Finally, so far not regarded photosensitive modules and protein architectures with potential for optogenetic application are described.

Key words

Photoreceptor Signal transduction Optogenetics Synthetic biology 

Notes

Acknowledgments

I would like to thank John Kennis and Peter Hegemann for generous support over the last years.

References

  1. 1.
    Hauser FE, van Hazel I, Chang BSW (2014) Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data? J Exp Zool B 322(7):529–539CrossRefGoogle Scholar
  2. 2.
    Thoen HH, How MJ, Chiou TH, Marshall J (2014) A different form of color vision in mantis shrimp. Science 343(6169):411–413CrossRefPubMedGoogle Scholar
  3. 3.
    Rockwell NC, Duanmu D, Martin SS, Bachy C, Price DC, Bhattacharya D et al (2014) Eukaryotic algal phytochromes span the visible spectrum. Proc Natl Acad Sci U S A 111(10):3871–3876CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ishizuka T, Shimada T, Okajima K, Yoshihara S, Ochiai Y, Katayama M et al (2006) Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 47(9):1251–1261CrossRefPubMedGoogle Scholar
  5. 5.
    Losi A, Gärtner W (2012) The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu Rev Plant Biol 63:49–72CrossRefPubMedGoogle Scholar
  6. 6.
    Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N et al (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282(13):9383–9391CrossRefPubMedGoogle Scholar
  7. 7.
    Carell T, Burgdorf LT, Kundu LM, Cichon M (2001) The mechanism of action of DNA photolyases. Curr Opin Chem Biol 5(5):491–498CrossRefPubMedGoogle Scholar
  8. 8.
    Beel B, Prager K, Spexard M, Sasso S, Weiss D, Muller N et al (2012) A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii. Plant Cell 24(7):2992–3008CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jenkins GI (2014) The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26(1):21–37CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Meyer TE, Kyndt JA, Memmi S, Moser T, Colon-Acevedo B, Devreese B et al (2012) The growing family of photoactive yellow proteins and their presumed functional roles. Photochem Photobiol Sci 11(10):1495–1514CrossRefPubMedGoogle Scholar
  11. 11.
    Ortiz-Guerrero JM, Polanco MC, Murillo FJ, Padmanabhan S, Elias-Arnanz M (2011) Light-dependent gene regulation by a coenzyme B12-based photoreceptor. Proc Natl Acad Sci U S A 108(18):7565–7570CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mathes T, van Stokkum IHM, Kennis JTM (2014) Photoactivation mechanisms of flavin-binding photoreceptors revealed through ultrafast spectroscopy and global analysis methods. Flavins Flavoproteins Methods Protocols 1146:401–442CrossRefGoogle Scholar
  13. 13.
    Kennis JTM, Mathes T (2013) Molecular eyes: proteins that transform light into biological information. Interface Focus 3(5):20130005CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Barlow RB, Birge RR, Kaplan E, Tallent JR (1993) On the molecular-origin of photoreceptor noise. Nature 366(6450):64–66CrossRefPubMedGoogle Scholar
  15. 15.
    Stujenske JM, Spellman T, Gordon JA (2015) Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep 12(3):525–534CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mathes T, Heilmann M, Pandit A, Zhu J, Ravensbergen J, Kloz M et al (2015) Proton-coupled electron transfer constitutes the photoactivation mechanism of the plant photoreceptor UVR8. J Am Chem Soc 137(25):8113–8120CrossRefPubMedGoogle Scholar
  17. 17.
    Heilmann M, Christie JM, Kennis JT, Jenkins GI, Mathes T (2015) Photoinduced transformation of UVR8 monitored by vibrational and fluorescence spectroscopy. Photochem Photobiol Sci 14(2):252–257CrossRefPubMedGoogle Scholar
  18. 18.
    Ziegler T, Möglich A (2015) Photoreceptor engineering. Front Mol Biosci 2:30Google Scholar
  19. 19.
    Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pathak GP, Losi A, Gärtner W (2011) Metagenome-based screening reveals worldwide distribution of LOV-domain proteins. Photochem Photobiol 88(1):107–118CrossRefPubMedGoogle Scholar
  21. 21.
    Pathak GP, Ehrenreich A, Losi A, Streit WR, Gärtner W (2009) Novel blue light-sensitive proteins from a metagenomic approach. Environ Microbiol 11(9):2388–2399Google Scholar
  22. 22.
    Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J, Deisseroth K et al (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 287(38):31804–31812CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP et al (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344(6182):409–412CrossRefPubMedGoogle Scholar
  24. 24.
    Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C et al (2011) Ultra light-sensitive and fast neuronal activation with the Ca(2)+-permeable channelrhodopsin CatCh. Nat Neurosci 14(4):513–518CrossRefPubMedGoogle Scholar
  25. 25.
    Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12(2):229–234CrossRefPubMedGoogle Scholar
  26. 26.
    Weissenberger S, Schultheis C, Liewald JF, Erbguth K, Nagel G, Gottschalk A (2011) PACalpha--an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116(4):616–625CrossRefPubMedGoogle Scholar
  27. 27.
    Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A et al (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286(2):1181–1188CrossRefPubMedGoogle Scholar
  28. 28.
    Schröder-Lang S, Schwarzel M, Seifert R, Strunker T, Kateriya S, Looser J et al (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4(1):39–42CrossRefPubMedGoogle Scholar
  29. 29.
    Chen ZH, Raffelberg S, Losi A, Schaap P, Gärtner W (2014) A cyanobacterial light activated adenylyl cyclase partially restores development of a Dictyostelium discoideum, adenylyl cyclase a null mutant. J Biotechnol 191:246–249Google Scholar
  30. 30.
    Möglich A, Moffat K (2010) Engineered photoreceptors as novel optogenetic tools. Photochem Photobiol Sci 9(10):1286–1300CrossRefPubMedGoogle Scholar
  31. 31.
    Takahashi F, Yamagata D, Ishikawa M, Fukamatsu Y, Ogura Y, Kasahara M et al (2007) AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc Natl Acad Sci U S A 104(49):19625–19630CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hisatomi O, Nakatani Y, Takeuchi K, Takahashi F, Kataoka H (2014) Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence. J Biol Chem 289(25):17379–17391CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang X, Chen XJ, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9(3):266–269CrossRefPubMedGoogle Scholar
  34. 34.
    Motta-Mena LB, Reade A, Mallory MJ, Glantz S, Weiner OD, Lynch KW et al (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol 10(3):196–202CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301(5639):1541–1544CrossRefPubMedGoogle Scholar
  36. 36.
    Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B et al (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461(7260):104–108CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schmidt D, Tillberg PW, Chen F, Boyden ES (2014) A fully genetically encoded protein architecture for optical control of peptide ligand concentration. Nat Commun 5:3019PubMedPubMedCentralGoogle Scholar
  38. 38.
    Cosentino C, Alberio L, Gazzarrini S, Aquila M, Romano E, Cermenati S et al (2015) Optogenetics. Engineering of a light-gated potassium channel. Science 348(6235):707–710CrossRefPubMedGoogle Scholar
  39. 39.
    Morgan SA, Al-Abdul-Wahid S, Woolley GA (2010) Structure-based design of a photocontrolled DNA binding protein. J Mol Biol 399(1):94–112CrossRefPubMedGoogle Scholar
  40. 40.
    Strickland D, Lin Y, Wagner E, Hope CM, Zayner J, Antoniou C et al (2012) TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat Methods 9(4):379–384CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pathak GP, Strickland D, Vrana JD, Tucker CL (2014) Benchmarking of optical dimerizer systems. ACS Synth Biol 3(11):832–838CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Reis JM, Burns DC, Woolley GA (2014) Optical control of protein-protein interactions via blue light-induced domain swapping. Biochemistry 53(30):5008–5016CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7(12):973–975, advance online publicationCrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Toettcher JE, Gong D, Lim WA, Weiner OD (2011) Light-based feedback for controlling intracellular signaling dynamics. Nat Methods 8(10):837–839CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV (2013) Optogenetic protein clustering and signaling activation in mammalian cells. Nat Methods 10(3):249–252CrossRefPubMedGoogle Scholar
  46. 46.
    Taslimi A, Vrana JD, Chen D, Borinskaya S, Mayer BJ, Kennedy MJ et al (2014) An optimized optogenetic clustering tool for probing protein interaction and function. Nat Commun 5:4925CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Che DL, Duan L, Zhang K, Cui B (2015) The dual characteristics of light-induced cryptochrome 2, homo-oligomerization and heterodimerization, for optogenetic manipulation in mammalian cells. ACS Synth Biol 4(10):1124–1135CrossRefPubMedGoogle Scholar
  48. 48.
    Kianianmomeni A (2015) UVB-based optogenetic tools. Trends Biotechnol 33(2):59–61CrossRefPubMedGoogle Scholar
  49. 49.
    Möglich A, Ayers RA, Moffat K (2009) Design and signaling mechanism of light-regulated histidine kinases. J Mol Biol 385(5):1433–1444CrossRefPubMedGoogle Scholar
  50. 50.
    Gasser C, Taiber S, Yeh C-M, Wittig CH, Hegemann P, Ryu S et al (2014) Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc Natl Acad Sci U S A 111(24):8803–8808CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ryu M-H, Kang I-H, Nelson MD, Jensen TM, Lyuksyutova AI, Siltberg-Liberles J et al (2014) Engineering adenylate cyclases regulated by near-infrared window light. Proc Natl Acad Sci U S A 111(28):10167–10172CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Han Y, Braatsch S, Osterloh L, Klug G (2004) A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium Rhodobacter sphaeroides 2.4.1. Proc Natl Acad Sci U S A 101(33):12306–12311CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Strickland D, Moffat K, Sosnick TR (2008) Light-activated DNA binding in a designed allosteric protein. Proc Natl Acad Sci 105(31):10709–10714CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ohlendorf R, Vidavski RR, Eldar A, Moffat K, Möglich A (2012) From dusk till dawn: one-plasmid systems for light-regulated gene expression. J Mol Biol 416(4):534–542CrossRefPubMedGoogle Scholar
  55. 55.
    Qi Y, Rao F, Luo Z, Liang Z-X (2009) A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in AxDGC2 from Acetobacter xylinum. Biochemistry 48(43):10275–10285CrossRefPubMedGoogle Scholar
  56. 56.
    Barends TR, Hartmann E, Griese JJ, Beitlich T, Kirienko NV, Ryjenkov DA et al (2009) Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature 459(7249):1015–1018CrossRefPubMedGoogle Scholar
  57. 57.
    Kanazawa T, Ren S, Maekawa M, Hasegawa K, Arisaka F, Hyodo M et al (2010) Biochemical and physiological characterization of a BLUF protein−EAL protein complex involved in blue light-dependent degradation of cyclic diguanylate in the purple bacterium Rhodopseudomonas palustris. Biochemistry 49(50):10647–10655CrossRefPubMedGoogle Scholar
  58. 58.
    Schaap P (2013) Cyclic di-nucleotide signaling enters the eukaryote domain. IUBMB Life 65(11):897–903CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Broichhagen J, Frank JA, Trauner D (2015) A roadmap to success in photopharmacology. Acc Chem Res 48(7):1947–1960CrossRefPubMedGoogle Scholar
  60. 60.
    Fehrentz T, Schonberger M, Trauner D (2011) Optochemical genetics. Angew Chem Int Ed Engl 50(51):12156–12182CrossRefPubMedGoogle Scholar
  61. 61.
    Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Nguyen TMT et al (2012) A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J Biol Chem 287(47):40083–40090CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sexton TJ, Golczak M, Palczewski K, Van Gelder RN (2012) Melanopsin is highly resistant to light and chemical bleaching in vivo. J Biol Chem 287(25):20888–20897CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    van Wyk M, Pielecka-Fortuna J, Lowel S, Kleinlogel S (2015) Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol 13(5):e1002143CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Beiert T, Bruegmann T, Sasse P (2014) Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes. Cardiovasc Res 102(3):507–516CrossRefPubMedGoogle Scholar
  65. 65.
    Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24(11):1234–1240CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Scheib U, Stehfest K, Gee CE, Korschen HG, Fudim R, Oertner TG et al (2015) The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci Signal 8(389):rs8CrossRefPubMedGoogle Scholar
  67. 67.
    Gao S, Nagpal J, Schneider MW, Kozjak-Pavlovic V, Nagel G, Gottschalk A (2015) Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat Commun 6:8046CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ryu MH, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285(53):41501–41508CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309(5743):2061–2064CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul J-M et al (2008) A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci U S A 105(33):12075–12080CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Leverenz RL, Sutter M, Wilson A, Gupta S, Thurotte A, de Carbon CB et al (2015) A 12 angstrom carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science 348(6242):1463–1466CrossRefPubMedGoogle Scholar
  72. 72.
    Gwizdala M, Wilson A, Kirilovsky D (2011) In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the orange carotenoid protein in synechocystis PCC 6803. Plant Cell 23(7):2631–2643CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Auldridge ME, Satyshur KA, Anstrom DM, Forest KT (2012) Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. J Biol Chem 287(10):7000–7009CrossRefPubMedGoogle Scholar
  74. 74.
    Takala H, Bjorling A, Linna M, Westenhoff S, Ihalainen JA (2015) Light-induced changes in the dimerization interface of bacteriophytochromes. J Biol Chem 290(26):16383–16392CrossRefPubMedGoogle Scholar
  75. 75.
    Zemelman BV, Lee GA, Ng M, Miesenböck G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33(1):15–22Google Scholar
  76. 76.
    Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029CrossRefPubMedGoogle Scholar
  77. 77.
    Kim JM, Hwa J, Garriga P, Reeves PJ, RajBhandary UL, Khorana HG (2005) Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Biochemistry 44(7):2284–2292CrossRefPubMedGoogle Scholar
  78. 78.
    Oh E, Maejima T, Liu C, Deneris E, Herlitze S (2010) Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor. J Biol Chem 285(40):30825–30836CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468(7326):921–926CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Liu J, Ward A, Gao J, Dong Y, Nishio N, Inada H et al (2010) C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat Neurosci 13(6):715–722CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Ward A, Liu J, Feng Z, Xu XZ (2008) Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci 11(8):916–922CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Edwards SL, Charlie NK, Milfort MC, Brown BS, Gravlin CN, Knecht JE et al (2008) A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 6(8):e198CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Bhatla N, Horvitz HR (2015) Light and hydrogen peroxide inhibit C. elegans Feeding through gustatory receptor orthologs and pharyngeal neurons. Neuron 85(4):804–818CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Jost M, Fernández-Zapata J, Polanco MC, Ortiz-Guerrero JM, Chen PY-T, Kang G, Padmanabhan S, Elías-Arnanz M & Drennan CL (2015) Structural basis for gene regulation by a B12-dependent photoreceptor. Nature 526, 536–541Google Scholar
  85. 85.
    Muller F, Walker WH, Massey V, Brustlei M, Hemmeric P (1972) Light-absorption studies on neutral flavin radicals. Eur J Biochem 25(3):573–580CrossRefPubMedGoogle Scholar
  86. 86.
    Gauden M, Yeremenko S, Laan W, van Stokkum IHM, Ihalainen JA, van Grondelle R et al (2005) Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes. Biochemistry 44(10):3653–3662CrossRefPubMedGoogle Scholar
  87. 87.
    Zirak P, Penzkofer A, Lehmpfuhl C, Mathes T, Hegemann P (2007) Absorption and emission spectroscopic characterization of blue-light receptor Slr1694 from Synechocystis sp. PCC6803. J Photochem Photobiol B 86(1):22–34Google Scholar
  88. 88.
    Zirak P, Penzkofer A, Schiereis T, Hegemann P, Jung A, Schlichting I (2006) Photodynamics of the small BLUF protein BlrB from Rhodobacter sphaeroides. J Photochem Photobiol B 83(3):180–194CrossRefPubMedGoogle Scholar
  89. 89.
    Kottke T, Heberle J, Hehn D, Dick B, Hegemann P (2003) Phot-LOV1: photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. Biophys J 84(2 Pt 1):1192–1201CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kennis JTM, Crosson S, Gauden M, van Stokkum IH, Moffat K, van Grondelle R (2003) Primary reactions of the LOV2 domain of phototropin, a plant blue-light photoreceptor. Biochemistry 42(12):3385–3392CrossRefPubMedGoogle Scholar
  91. 91.
    Müller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T et al (2014) ATP binding turns plant cryptochrome into an efficient natural photoswitch. Sci Rep 4Google Scholar
  92. 92.
    Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat Struct Mol Biol 10(6):489–490CrossRefGoogle Scholar
  93. 93.
    Losi A, Gensch T, van der Horst MA, Hellingwerf KJ, Braslavsky SE (2005) Hydrogen-bond network probed by time-resolved optoacoustic spectroscopy: photoactive yellow protein and the effect of E46Q and E46A mutations. Phys Chem Chem Phys 7(10):2229–2236CrossRefPubMedGoogle Scholar
  94. 94.
    Lincoln CN, Fitzpatrick AE, van Thor JJ (2012) Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein. Phys Chem Chem Phys 14(45):15752–15764CrossRefPubMedGoogle Scholar
  95. 95.
    Fan HY, Morgan SA, Brechun KE, Chen YY, Jaikaran ASI, Woolley GA (2011) Improving a designed photocontrolled DNA-binding protein. Biochemistry 50(7):1226–1237CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Lamparter T, Esteban B, Hughes J (2001) Phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803—purification, assembly, and quaternary structure. Eur J Biochem 268(17):4720–4730CrossRefPubMedGoogle Scholar
  97. 97.
    Vierstra RD, Quail PH (1983) Photochemistry of 124 kilodalton Avena phytochrome in vitro. Plant Physiol 72(1):264–267CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Pennacchietti F, Losi A, Xu XL, Zhao KH, Gärtner W, Viappiani C et al (2015) Photochromic conversion in a red/green cyanobacteriochrome from Synechocystis PCC6803: quantum yields in solution and photoswitching dynamics in living E. coli cells. Photochem Photobiol Sci 14(2):229–237Google Scholar
  99. 99.
    Popot JL, Gerchman SE, Engelman DM (1987) Refolding of bacteriorhodopsin in lipid bilayers—a thermodynamically controlled 2-stage process. J Mol Biol 198(4):655–676CrossRefPubMedGoogle Scholar
  100. 100.
    Govindjee R, Balashov SP, Ebrey TG (1990) Quantum efficiency of the photochemical cycle of bacteriorhodopsin. Biophys J 58(3):597–608CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption-coefficient of a protein. Protein Sci 4(11):2411–2423CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Chen D, Gibson ES, Kennedy MJ (2013) A light-triggered protein secretion system. J Cell Biol 201(4):631–640CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Müller K, Engesser R, Schulz S, Steinberg T, Tomakidi P, Weber CC et al (2013) Multi-chromatic control of mammalian gene expression and signaling. Nucleic Acids Res 41(12):e124Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Exact Sciences/BiophysicsVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations