Skip to main content
Book cover

Optogenetics pp 281–292Cite as

Remote Patterning of Transgene Expression Using Near Infrared-Responsive Plasmonic Hydrogels

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1408))

Abstract

The development of noninvasive technologies for remote control of gene expression has received increased attention for their therapeutic potential in clinical scenarios, including cancer, neurological disorders, immunology, tissue engineering, as well as developmental biology research. Near-infrared (NIR) light is a suitable source of energy that can be employed to pattern transgene expression in plasmonic cell constructs. Gold nanoparticles tailored to exhibit a plasmon surface band absorption peaking at NIR wavelengths within the so called tissue optical window (TOW) can be used as fillers in fibrin-based hydrogels. These biocompatible composites can be loaded with cells harboring heat-inducible gene switches. NIR laser irradiation of the resulting plasmonic cell constructs causes the local conversion of NIR photon energy into heat, achieving spatially restricted patterns of transgene expression that faithfully match the illuminated areas of the hydrogels. In combination with cells genetically engineered to harbor gene switches activated by heat and dependent on a small-molecule regulator (SMR), NIR-responsive hydrogels allow reliable and safe control of the spatiotemporal availability of therapeutic biomolecules in target tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  2. Welch WJ (1993) How cells respond to stress. Sci Am 268:56–64

    Article  CAS  PubMed  Google Scholar 

  3. Cotto JJ, Morimoto RI (1999) Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors. Biochem Soc Symp 64:105–118

    CAS  PubMed  Google Scholar 

  4. Voellmy R (2004) Transcriptional regulation of the metazoan stress protein response. Prog Nucleic Acid Res Mol Biol 78:143–185

    Article  CAS  PubMed  Google Scholar 

  5. Christians ES, Benjamin IJ (2006) Heat shock response: lessons from mouse knockouts. Handb Exp Pharmacol: (172) 139–152

    Google Scholar 

  6. Voellmy R, Ahmed A, Schiller P, Bromley P et al (1985) Isolation and functional analysis of a human 70,000-dalton heat shock protein gene segment. Proc Natl Acad Sci U S A 82:4949–4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiller P, Amin J, Ananthan J, Brown ME et al (1988) Cis-acting elements involved in the regulated expression of a human HSP70 gene. J Mol Biol 203:97–105

    Article  CAS  PubMed  Google Scholar 

  8. Dreano M, Brochot J, Myers A, Cheng-Meyer C et al (1986) High-level, heat-regulated synthesis of proteins in eukaryotic cells. Gene 49:1–8

    Article  CAS  PubMed  Google Scholar 

  9. Vilaboa N, Voellmy R (2006) Regulatable gene expression systems for gene therapy. Curr Gene Ther 6:421–438

    Article  CAS  PubMed  Google Scholar 

  10. Huang Q, Hu JK, Lohr F, Zhang L et al (2000) Heat-induced gene expression as a novel targeted cancer gene therapy strategy. Cancer Res 60:3435–3439

    CAS  PubMed  Google Scholar 

  11. Vekris A, Maurange C, Moonen C, Mazurier F et al (2000) Control of transgene expression using local hyperthermia in combination with a heat-sensitive promoter. J Gene Med 2:89–96

    Article  CAS  PubMed  Google Scholar 

  12. Locke M, Noble EG, Tanguay RM, Feild MR et al (1995) Activation of heat-shock transcription factor in rat heart after heat shock and exercise. Am J Physiol 268:C1387–C1394

    CAS  PubMed  Google Scholar 

  13. Shastry S, Toft DO, Joyner MJ (2002) HSP70 and HSP90 expression in leucocytes after exercise in moderately trained humans. Acta Physiol Scand 175:139–146

    Article  CAS  PubMed  Google Scholar 

  14. Vilaboa N, Fenna M, Munson J, Roberts SM et al (2005) Novel gene switches for targeted and timed expression of proteins of interest. Mol Ther 12:290–298

    Article  CAS  PubMed  Google Scholar 

  15. Martin-Saavedra FM, Wilson CG, Voellmy R, Vilaboa N et al (2013) Spatiotemporal control of vascular endothelial growth factor expression using a heat-shock-activated, rapamycin-dependent gene switch. Hum Gene Ther Methods 24:160–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Konig K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104

    Article  CAS  PubMed  Google Scholar 

  17. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  CAS  PubMed  Google Scholar 

  18. Miyako E, Deguchi T, Nakajima Y, Yudasaka M et al (2012) Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns. Proc Natl Acad Sci U S A 109:7523–7528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cebrian V, Martin-Saavedra F, Gomez L, Arruebo M et al (2013) Enhancing of plasmonic photothermal therapy through heat-inducible transgene activity. Nanomedicine 9:646–656

    CAS  PubMed  Google Scholar 

  20. Martin-Saavedra FM, Cebrian V, Gomez L, Lopez D et al (2014) Temporal and spatial patterning of transgene expression by near-infrared irradiation. Biomaterials 35:8134–8143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by grants PI12/01698 from Fondo de Investigaciones Sanitarias (FIS, Spanish Ministry of Economy and Competitiveness, MINECO, Spain) and SAF2013-50364-EXP (MINECO, Spain) to N.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Vilaboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Martín-Saavedra, F., Vilaboa, N. (2016). Remote Patterning of Transgene Expression Using Near Infrared-Responsive Plasmonic Hydrogels. In: Kianianmomeni, A. (eds) Optogenetics. Methods in Molecular Biology, vol 1408. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3512-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3512-3_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3510-9

  • Online ISBN: 978-1-4939-3512-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics