Advertisement

Optogenetics pp 267-279 | Cite as

Optogenetic Tools for Confined Stimulation in Deep Brain Structures

  • Alexandre Castonguay
  • Sébastien Thomas
  • Frédéric Lesage
  • Christian CasanovaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)

Abstract

Optogenetics has emerged in the past decade as a technique to modulate brain activity with cell-type specificity and with high temporal resolution. Among the challenges associated with this technique is the difficulty to target a spatially restricted neuron population. Indeed, light absorption and scattering in biological tissues make it difficult to illuminate a minute volume, especially in the deep brain, without the use of optical fibers to guide light. This work describes the design and the in vivo application of a side-firing optical fiber adequate for delivering light to specific regions within a brain subcortical structure.

Key words

Deep brain stimulation Optogenetics Side-firing optical fiber 

Notes

Acknowledgment

Supported by a Fonds de Recherche du Québec-Nature et Technologies (FRQ-NT) grant #165075 (Projet de recherche en équipe) to F.L. and C.C. and by Natural Sciences and Engineering Research Council of Canada (NSERC) grants #194670 and 239876 to C.C. and F.L., respectively. A.C. was supported in part by scholarships from the Fonds de Recherche en Santé du Québec (FRSQ) vision network and the Faculté des Études Supérieures et Postdoctorales-Institut de Génie Biomedical (FESP-IGB) of the Université de Montréal.

References

  1. 1.
    Berman RA, Wurtz RH (2008) Exploring the pulvinar path to visual cortex. Prog Brain Res 171:467–473, ElsevierCrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268CrossRefPubMedGoogle Scholar
  3. 3.
    Scott NA, Murphy TH (2012) Hemodynamic responses evoked by neuronal stimulation via channelrhodopsin-2 can be independent of intracortical glutamatergic synaptic transmission. PLoS One 7:e29859CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mateo C, Avermann M, Gentet LJ et al (2011) In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition. Curr Biol 21:1593–1602CrossRefPubMedGoogle Scholar
  5. 5.
    Yizhar O, Fenno LE, Prigge M et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fodor L, Ullmann Y, Elman M (2011) Light tissue interactions. In: Aesthetic applications of intense pulsed light. Springer, LondonGoogle Scholar
  7. 7.
    LeChasseur Y, Dufour S, Lavertu G et al (2011) A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat Methods 8:319–325CrossRefPubMedGoogle Scholar
  8. 8.
    Zorzos AN, Scholvin J, Boyden ES, Fonstad CG (2012) Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt Lett 37:4841CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412CrossRefPubMedGoogle Scholar
  10. 10.
    Chalupa L, Williams R (2008) Eye, retina and visual system of the mouse. The MIT Press, CambridgeGoogle Scholar
  11. 11.
    Grinvald A, Lieke E, Frostig RD et al (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–364CrossRefPubMedGoogle Scholar
  12. 12.
    Hillman EMC (2007) Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt 12:051402CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Frostig RD, Masino SA, Kwon MC, Chen CH (1995) Using light to probe the brain: intrinsic signal optical imaging. Int J Imaging Syst Technol 6:216–224CrossRefGoogle Scholar
  14. 14.
    Wang J, Wagner F, Borton DA et al (2012) Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng 9:016001CrossRefPubMedGoogle Scholar
  15. 15.
    Castonguay A, Thomas S, Lesage F, Casanova C (2014) Repetitive and retinotopically restricted activation of the dorsal lateral geniculate nucleus with optogenetics. PLoS One 9:e94633CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lin S-T, Gheewala M, Wolfe JC, et al (2011) A flexible optrode for deep brain neurophotonics. Paper presented at the 5th International IEEE EMBS Conference on Neural Engineering, Cancun, April 27–May 1 2011Google Scholar
  17. 17.
    Franklin KBJ (2013) Paxinos and Franklin’s: the mouse brain in stereotaxic coordinates, 4th edn. Academic, Amsterdam, An imprint of ElsevierGoogle Scholar
  18. 18.
    Boas D, Culver J, Stott J, Dunn A (2002) Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt Express 10:159–170CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexandre Castonguay
    • 1
  • Sébastien Thomas
    • 2
  • Frédéric Lesage
    • 1
    • 3
  • Christian Casanova
    • 2
    Email author
  1. 1.École Polytechnique de MontréalMontréalCanada
  2. 2.Laboratoire des Neurosciences de la Vision, École d’optométrieUniversité de MontréalMontréalCanada
  3. 3.Research CenterMontreal Heart InstituteMontréalCanada

Personalised recommendations