Advertisement

Optogenetics pp 251-265 | Cite as

Optogenetic Approaches for Mesoscopic Brain Mapping

  • Michael Kyweriga
  • Majid H. MohajeraniEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)

Abstract

Recent advances in identifying genetically unique neuronal proteins has revolutionized the study of brain circuitry. Researchers are now able to insert specific light-sensitive proteins (opsins) into a wide range of specific cell types via viral injections or by breeding transgenic mice. These opsins enable the activation, inhibition, or modulation of neuronal activity with millisecond control within distinct brain regions defined by genetic markers. Here we present a useful guide to implement this technique into any lab. We first review the materials needed and practical considerations and provide in-depth instructions for acute surgeries in mice. We conclude with all-optical mapping techniques for simultaneous recording and manipulation of population activity of many neurons in vivo by combining arbitrary point optogenetic stimulation and regional voltage-sensitive dye imaging. It is our intent to make these methods available to anyone wishing to use them.

Key words

Optogenetics Virus Transgenic Mouse Neuron Circuit Brain Channelrhodopsin (ChR2) Voltage-sensitive dyes (VSD) 

Notes

Acknowledgments

This work was supported from the Natural Sciences and Engineering Research Council of Canada Discovery Grant, the Alberta Alzheimer Research Program, and the Alberta Innovates: Health Solutions to M.H.M. and NSERC CREATE BIP Postdoctoral Trainee Grant to M.K. M.H.M. is the holder of the CAIP chair in Brain Function in Health and Dementia.

References

  1. 1.
    Lim DH, Mohajerani MH, LeDue J et al (2012) In vivo large-scale cortical mapping using channelrhodopsin-2 stimulation in transgenic mice reveals asymmetric and reciprocal relationships between cortical areas. Front Neural Circuits 6:1–19. doi: 10.3389/fncir.2012.00011 CrossRefGoogle Scholar
  2. 2.
    Lim DH, LeDue JM, Mohajerani MH, Murphy TH (2014) Optogenetic mapping after stroke reveals network-wide scaling of functional connections and heterogeneous recovery of the peri-infarct. J Neurosci 34:16455–16466. doi: 10.1523/JNEUROSCI.3384-14.2014 CrossRefPubMedGoogle Scholar
  3. 3.
    Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268CrossRefPubMedGoogle Scholar
  4. 4.
    Packer AM, Roska B, Häusser M (2013) Targeting neurons and photons for optogenetics. Nat Neurosci 16:805–815. doi: 10.1038/nn.3427 CrossRefPubMedGoogle Scholar
  5. 5.
    Lin JY (2012) Optogenetic excitation of neurons with channelrhodopsins: Light instrumentation, expression systems, and channelrhodopsin variants. In: Knopfel T, Boyden ES (eds) Prog Brain Res. pp 29–47Google Scholar
  6. 6.
    Lima SQ, Hromádka T, Znamenskiy P, Zador AM (2009) PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One. doi: 10.1371/journal.pone.0006099 Google Scholar
  7. 7.
    Moore AK, Wehr M (2013) Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. J Neurosci 33:13713–13723. doi: 10.1523/JNEUROSCI.0663-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gentet LJ, Kremer Y, Taniguchi H et al (2012) Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat Neurosci 15:607–612. doi: 10.1038/nn.3051 CrossRefPubMedGoogle Scholar
  9. 9.
    Pfeffer CK, Xue M, He M et al (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16:1068–1076. doi: 10.1038/nn.3446 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shepherd GMG, Stepanyants A, Bureau I et al (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8:782–790. doi: 10.1038/nn1447 CrossRefPubMedGoogle Scholar
  11. 11.
    Chen S, Mohajerani MH, Xie Y, Murphy TH (2012) Optogenetic analysis of neuronal excitability during global ischemia reveals selective deficits in sensory processing following reperfusion in mouse cortex. J Neurosci 32:13510–13519. doi: 10.1523/JNEUROSCI.1439-12.2012 CrossRefPubMedGoogle Scholar
  12. 12.
    Packer AM, Russell LE, Dalgleish HWP, Häusser M (2015) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12:140–146. doi: 10.1038/nmeth.3217 CrossRefPubMedGoogle Scholar
  13. 13.
    Chow BY, Han X, Boyden ES (2012) Genetically encoded molecular tools for light-driven silencing of targeted neurons, 1st ed. Prog Brain Res 196:49–61. doi: 10.1016/B978-0-444-59426-6.00003-3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mohajerani MH, Chan AW, Mohsenvand M et al (2013) Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 16:1426–35. doi: 10.1038/nn.3499 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chan AW, Mohajerani MH, Ledue JM et al (2015) Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs. Nat Commun. doi: 10.1038/ncomms8738 Google Scholar
  16. 16.
    Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885. doi: 10.1038/nrn1536 CrossRefPubMedGoogle Scholar
  17. 17.
    Akemann W, Mutoh H, Perron A et al (2012) Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol 108:2323–2337. doi: 10.1152/jn.00452.2012 CrossRefPubMedGoogle Scholar
  18. 18.
    Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300. doi: 10.1038/nature12354 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shoham D, Glaser DE, Arieli A et al (1999) Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24:791–802, doi: S0896-6273(00)81027-2 [pii]CrossRefPubMedGoogle Scholar
  20. 20.
    Suter BA, O’Connor T, Iyer V et al (2010) Ephus: multipurpose data acquisition software for neuroscience experiments. Front Neurosci 4:1–12. doi: 10.3389/fnins.2010.00053 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Neuroscience, Canadian Centre for Behavioural NeuroscienceUniversity of Lethbridge at LethbridgeLethbridgeCanada

Personalised recommendations