Optogenetics pp 207-225 | Cite as

Combined Optogenetic and Chemogenetic Control of Neurons

  • Ken Berglund
  • Jack K. Tung
  • Bryan Higashikubo
  • Robert E. Gross
  • Christopher I. Moore
  • Ute Hochgeschwender
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)

Abstract

Optogenetics provides an array of elements for specific biophysical control, while designer chemogenetic receptors provide a minimally invasive method to control circuits in vivo by peripheral injection. We developed a strategy for selective regulation of activity in specific cells that integrates opto- and chemogenetic approaches, and thus allows manipulation of neuronal activity over a range of spatial and temporal scales in the same experimental animal. Light-sensing molecules (opsins) are activated by biologically produced light through luciferases upon peripheral injection of a small molecule substrate. Such luminescent opsins, luminopsins, allow conventional fiber optic use of optogenetic sensors, while at the same time providing chemogenetic access to the same sensors. We describe applications of this approach in cultured neurons in vitro, in brain slices ex vivo, and in awake and anesthetized animals in vivo.

Key words

Luminopsin Luciferase Bioluminescence Coelenterazine Optogenetics Chemogenetics Neuron Electrophysiology Multielectrode array Behavior 

References

  1. 1.
    Sternson SM, Roth BL (2014) Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 37:387–407CrossRefPubMedGoogle Scholar
  2. 2.
    Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412CrossRefPubMedGoogle Scholar
  3. 3.
    Berglund K, Birkner E, Augustine GJ, Hochgeschwender U (2013) Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons. PLoS One 8:e59759. doi:10.1371/journal.pone.0059759 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Verhaegen M, Christopoulos TK (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74:4378–4385CrossRefGoogle Scholar
  5. 5.
    Tannous BA, Kim D-E, Fernandez JL et al (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11:435–443CrossRefPubMedGoogle Scholar
  6. 6.
    Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang F, Prigge M, Beyrière F et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11:631–633CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Saito K, Chang Y-F, Horikawa K et al (2012) Luminescent proteins for high-speed single-cell and whole-body imaging. Nat Commun 3:1262. doi:10.1038/ncomms2248 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:10306–10313PubMedGoogle Scholar
  10. 10.
    Zhu H, Roth BL (2014) DREADD: a chemogenetic GPCR signaling platform. Int J Neuropsychopharmacol 18(1):pii: pyu007. doi:10.1093/ijnp/pyu007 CrossRefGoogle Scholar
  11. 11.
    Teranishi K, Shimomura O (1997) Solubilizing coelenterazine in water with hydroxypropyl-BETA-cyclodextrin. Biosci Biotechnol Biochem 61:1219–1220CrossRefGoogle Scholar
  12. 12.
    Naumann EA, Kampff AR, Prober DA et al (2010) Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 13:513–520CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Morse D, Tannous BA (2012) A water-soluble coelenterazine for sensitive in vivo imaging of coelenterate luciferases. Mol Ther 20:692–693CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hales CM, Rolston JD, Potter SM (2010) How to culture, record and stimulate neuronal networks on micro-electrode arrays (MEAs). J Vis Exp. doi:10.3791/2056 Google Scholar
  15. 15.
    Wang H, Peca J, Matsuzaki M et al (2007) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 104:8143–8148CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Voigts J, Siegle JH, Pritchett DL, Moore CI (2013) The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice. Front Syst Neurosci 7:8. doi:10.3389/fnsys.2013.00008 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ken Berglund
    • 1
  • Jack K. Tung
    • 1
    • 2
  • Bryan Higashikubo
    • 3
  • Robert E. Gross
    • 1
    • 2
  • Christopher I. Moore
    • 3
  • Ute Hochgeschwender
    • 4
  1. 1.Department of NeurosurgeryEmory UniversityAtlantaUSA
  2. 2.Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of NeuroscienceBrown UniversityProvidenceUSA
  4. 4.Neuroscience Program and College of MedicineCentral Michigan UniversityMt. PleasantUSA

Personalised recommendations