Skip to main content

Enhancing Channelrhodopsins: An Overview

  • Protocol
  • First Online:
Optogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1408))

Abstract

After the discovery of Channelrhodopsin, a light-gated ion channel, only a few people saw the diverse range of applications for such a protein. Now, more than 10 years later Channelrhodopsins have become widely accepted as the ultimate tool to control the membrane potential of excitable cells via illumination. The demand for more application-specific Channelrhodopsin variants started a race between protein engineers to design improved variants. Even though many engineered variants have undisputable advantages compared to wild-type variants, many users are alienated by the tremendous amount of new variants and their perplexing names.

Here, we review new variants whose efficacy has already been proven in neurophysiological experiments, or variants which are likely to extend the optogenetic toolbox. Variants are described based on their mechanistic and operational properties in terms of expression, kinetics, ion selectivity, and wavelength responsivity.

“A designer knows he has achieved perfection not

when there is nothing left to add,

but when there is nothing left to take.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  2. Li X, Gutierrez DV, Hanson MG et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102:17816–17821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  CAS  PubMed  Google Scholar 

  4. Deisseroth K, Feng G, Majewska AK et al (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ziegler T, Möglich A (2015) Photoreceptor engineering. Front Mol Biosci 2:1–25

    Article  CAS  Google Scholar 

  6. Hegemann P, Möglich A (2010) Channelrhodopsin engineering and exploration of new optogenetic tools. Nat Methods 8:39–43

    Article  PubMed  CAS  Google Scholar 

  7. Nagel G, Ollig D, Fuhrmann M et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  8. Sineshchekov OA, Jung K-H, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suzuki T, Yamasaki K, Fujita S et al (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717

    Article  CAS  PubMed  Google Scholar 

  10. Jens Kuhne FB, Eisenhauer K, Ritter E, Hegemann P, Gerwert K (2015) Early formation of the ion-conducting pore in channelrhodopsin-2. Angew Chem 54:4953–4957

    Article  CAS  Google Scholar 

  11. Zhang F, Vierock J, Yizhar O et al (2011) The microbial opsin family of optogenetic tools. Cell 147:1446–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Man D, Wang W, Sabehi G et al (2003) Diversivication and spectral tuning in marine proteorhodopsins. EMBO J 22:1725–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spudich JL, Jung K-H (2005) Handbook of photosensory receptors. Wiley-VCH, Weinheim

    Google Scholar 

  14. Kateriya S, Nagel G, Bamberg E et al (2004) “Vision” in single-celled algae. News Physiol Sci 19:133–137

    CAS  PubMed  Google Scholar 

  15. Mittelmeier TM, Berthold P, Danon A et al (2008) C2 domain protein MIN1 promotes eyespot organization in Chlamydomonas reinhardtii. Eukaryot Cell 7:2100–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagel G, Szellas T, Kateriya S et al (2005) Channelrhodopsins: directly light-gated cation channels. Biochem Soc Trans 33:863–866

    Article  CAS  PubMed  Google Scholar 

  17. Prakash R, Yizhar O, Grewe B et al (2012) Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 9:1171–1179

    Article  CAS  PubMed  Google Scholar 

  18. Fuhrmann M, Hausherr A, Ferbitz L et al (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55:869–881

    Article  CAS  PubMed  Google Scholar 

  19. Adamantidis AR, Zhang F, Aravanis AM et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Article  CAS  PubMed  Google Scholar 

  20. Gradinaru V, Zhang F, Ramakrishnan C et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao S, Cunha C, Zhang F et al (2008) Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 36:141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Asrican B, Augustine GJ, Berglund K et al (2013) Next-generation transgenic mice for optogenetic analysis of neural circuits. Front Neural Circuits 7:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Madisen L, Mao T, Koch H et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kianianmomeni A, Stehfest K, Nematollahi G et al (2009) Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature, and the sex inducer. Plant Physiol 151:347–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang F, Prigge M, Beyriere F et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11:631–633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Prigge M, Schneider F, Tsunoda SP et al (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 287:31804–31812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin JY, Knutsen PM, Muller A et al (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin B, Koizumi A, Tanaka N et al (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A 105:16009–16014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yizhar O, Fenno LE, Prigge M et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ito HT, Zhang S, Witter MP et al (2015) A prefrontal–thalamo–hippocampal circuit forgoal-directed spatialnavigation. Nature 522(7554):50–55

    Article  CAS  PubMed  Google Scholar 

  32. Inagaki HK, Jung Y, Hoopfer ED et al (2014) Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11:325–332

    Article  CAS  PubMed  Google Scholar 

  33. Diester I, Kaufman MT, Mogri M et al (2011) An optogenetic toolbox designed for primates. Nat Neurosci 14:387–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zou P, Zhao Y, Douglass AD et al (2014) Bright and fast multicoloured voltage reporters via electrochromic FRET. Nature Commun 5:4625

    CAS  Google Scholar 

  36. Hochbaum DR, Zhao Y, Farhi SL et al (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11:1–34

    Article  CAS  Google Scholar 

  37. Wietek J, Beltramo R, Scanziani M, Hegemann P, Oertner TG, Simon WJ (2015) An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo. Sci Rep 5:14807. doi:10.1038/srep14807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zimmermann D, Zhou A, Kiesel M et al (2008) Effects on capacitance by overexpression of membrane proteins. Biochem Biophys Res Commun 369:1022–1026

    Article  CAS  PubMed  Google Scholar 

  39. Mattis J, Tye K, Ferenczi E (2011) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature 18:159–172

    Google Scholar 

  40. Grossman N, Nikolic K, Toumazou C et al (2011) Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Trans Biomed Eng 58:1742–1751

    Article  PubMed  Google Scholar 

  41. Nikolic K, Grossman N, Grubb MS et al (2009) Photocycles of channelrhodopsin-2. Photochem Photobiol 85:400–411

    Article  CAS  PubMed  Google Scholar 

  42. Ernst OP, Lodowski DT, Elstner M et al (2014) Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms. Chem Rev 114:126–163

    Article  CAS  PubMed  Google Scholar 

  43. Kato HE, Zhang F, Yizhar O et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Richards R, Dempski RE (2012) Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2. PLoS One 7(11):E50018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Doyle DA, Cabral JM, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  46. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    Article  CAS  PubMed  Google Scholar 

  47. Payandeh J, Scheuer T, Zheng N et al (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feldbauer K, Zimmermann D, Pintschovius V et al (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106:12317–12322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Govorunova E, Sineshchekov O, Li H (2013) Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J Biol Chem 288:29911–29922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gradmann D, Berndt A, Schneider F et al (2011) Rectification of the channelrhodopsin early conductance. Biophys J 101:1057–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berndt A, Prigge M, Gradmann D et al (2010) Two open states with progressive proton selectivities in the branched channelrhodopsin-2 photocycle. Biophys J 98:753–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schneider F, Gradmann D, Hegemann P (2013) Ion selectivity and competition in channelrhodopsins. Biophys J 2:91–100

    Article  CAS  Google Scholar 

  53. Lin JY, Lin MZ, Steinbach P et al (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsunoda SP, Hegemann P (2009) Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation. Photochem Photobiol 85:564–569

    Article  CAS  PubMed  Google Scholar 

  55. Ritter E, Piwowarski P, Hegemann P et al (2013) Light-dark adaptation of channelrhodopsin C128T mutant. J Biol Chem 288:10451–10458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wen L, Wang H, Tanimoto S et al (2010) Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin. PLoS One 5:e12893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Berndt A, Schoenenberger P, Mattis J et al (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 108:7595–7600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nagel G, Ullrich S, Gueta R (2013) Degradation of channelopsin-2 in the absence of retinal and degradation resistance in certain mutants. Biol Chem 394:271–280

    PubMed  Google Scholar 

  60. Nikolic K, Jarvis S, Grossman N et al (2013) Computational models of optogenetic tools for controlling neural circuits with light. Conf Proc IEEE Eng Med Biol Soc 2013:5934–5937

    PubMed  Google Scholar 

  61. Beppu K, Sasaki T, Tanaka KF et al (2014) Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 81:314–320

    Article  CAS  PubMed  Google Scholar 

  62. Figueiredo M, Lane S, Stout RF et al (2014) Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium 56:208–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perea G, Yang A, Boyden ES et al (2014) Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat Commun 5:3262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Caldwell JH, Herin GA, Nagel G et al (2008) Increases in intracellular calcium triggered by channelrhodopsin-2 potentiate the response of metabotropic glutamate receptor mGluR7. J Biol Chem 283:24300–24307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Y-P, Oertner TG (2007) Optical induction of synaptic plasticity using a light-sensitive channel. Nat Methods 4:139–141

    Article  CAS  PubMed  Google Scholar 

  66. Ferenczi E, Deisseroth K (2012) When the electricity (and the lights) go out: transient changes in excitability. Nat Neurosci 15:1058–1060

    Article  CAS  PubMed  Google Scholar 

  67. Raimondo JV, Kay L, Ellender TJ et al (2012) Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat Neurosci 15:1102–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bruegmann T, Malan D, Hesse M et al (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900

    Article  CAS  PubMed  Google Scholar 

  69. Kleinlogel S, Feldbauer K, Dempski RE et al (2011) Ultra light-sensitive and fast neuronal activation with the Ca?+-permeable channelrhodopsin CatCh. Nat Neurosci 14:513–518

    Article  CAS  PubMed  Google Scholar 

  70. Pan ZH, Ganjawala TH, Lu Q et al (2014) ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration. PLoS One 9(6):e98924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Berndt A, Lee SY, Ramakrishnan C et al (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tomita H, Sugano E, Fukazawa Y et al (2009) Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 4:e7679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Watanabe HC, Welke K, Schneider F et al (2012) Structural model of channelrhodopsin. J Biol Chem 287:7456–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Govorunova EG, Sineshchekov OA, Janz R et al (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jentsch TJ, Introduction I, Stein V et al (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503

    Article  CAS  PubMed  Google Scholar 

  76. Berndt A, Yizhar O, Gunaydin LA et al (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  CAS  PubMed  Google Scholar 

  77. Hososhima S, Sakai S, Ishizuka T et al (2015) Kinetic evaluation of photosensitivity in bi-stable variants of chimeric channelrhodopsins. PLoS One 10:e0119558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Stehfest K, Ritter E, Berndt AB et al (2010) The branched photocycle of the slow-cycling channelrhodopsin-2 mutant C128T. J Mol Biol 398:690–702

    Article  CAS  PubMed  Google Scholar 

  79. Hoffmann M, Wanko M, Strodel P et al (2006) Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc 128:10808–10818

    Article  CAS  PubMed  Google Scholar 

  80. Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Inoue M, Takeuchi A, Horigane S et al (2014) Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods 12(1):64–70

    Article  PubMed  CAS  Google Scholar 

  82. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  Google Scholar 

  83. Stujenske JM, Spellman T, Gordon JA (2015) Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep 12:525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Heitler WJ, Goodman CS, Rowell CHF (1977) The effects of temperature on the threshold of identified neurons in the locust. J Comp Physiol 117:163–182

    Article  Google Scholar 

  85. Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  PubMed  Google Scholar 

  86. Yaroslavsky N, Schulze PC, Yaroslavsky IV et al (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47:2059–2073

    Article  CAS  PubMed  Google Scholar 

  87. Chuong A, Miri M, Acker L et al (2014) Non-invasive optogenetic neural silencing. Nat Neurosci 17:1123–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rickgauer JP, Tank DW (2009) Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci U S A 106:15025–15030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sneskov K, Olsen JMH, Schwabe T et al (2013) Computational screening of one- and two-photon spectrally tuned channelrhodopsin mutants. Phys Chem Chem Phys 15:7567–7576

    Article  CAS  PubMed  Google Scholar 

  90. Packer AM, Russell LE, Dalgleish HWP et al (2014) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12(2):140–146

    Article  PubMed  CAS  Google Scholar 

  91. Rickgauer JP, Deisseroth K, Tank DW (2014) Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat Neurosci 17:1816–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wiegert JS, Oertner TG (2013) Long-term depression triggers the selective elimination of weakly integrated synapses. Proc Natl Acad Sci U S A 110:E4510–E4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. St-Pierre F, Marshall JD, Yang Y et al (2014) High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 17:884–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Akerboom J, Carreras Calderón N, Tian L et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin J, Sann S, Zhou K et al (2013) Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 79:241–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kato HE, Kamiya M, Sugo S et al (2015) Atomistic design of microbial opsin-based blue-shifted optogenetics tools. Nat Commun 6:7177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grubb MS, Burrone J (2010) Channelrhodopsin-2 localised to the axon initial segment. PLoS One 5(10):e13761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Oesterhelt D, Hess B (1973) Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. Eur J Biochem 37:316–326

    Article  CAS  PubMed  Google Scholar 

  99. Bamann C, Kirsch T, Nagel G et al (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375:686–694

    Article  CAS  PubMed  Google Scholar 

  100. Ernst OP, Murcia PAS, Daldrop P et al (2008) Photoactivation of channelrhodopsin. J Biol Chem 283:1637–1643

    Article  CAS  PubMed  Google Scholar 

  101. Grimm C, Schneider F, Hegemann P (2015) Biophysics of channelrhodopsin. Annu Rev Biophys 44:167–186

    Article  PubMed  CAS  Google Scholar 

  102. Stehfest K, Hegemann P (2010) Evolution of the channelrhodopsin photocycle model. Chemphyschem 11:1120–1126

    Article  CAS  PubMed  Google Scholar 

  103. Watanabe HC, Welke K, Sindhikara DJ et al (2013) Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism. J Mol Biol 425:1795–1814

    Article  CAS  PubMed  Google Scholar 

  104. Gunaydin LA, Yizhar O, Berndt A et al (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392

    Article  CAS  PubMed  Google Scholar 

  105. Bruun S, Stoeppler D, Keidel A et al (2015) Light-dark adaptation of channelrhodopsin involves photoconversion between the all-trans and 13-cis retinal isomers. Biochemistry 54(35):5389–5400

    Article  CAS  PubMed  Google Scholar 

  106. Lórenz-Fonfría VA, Schultz B-J, Resler T et al (2015) Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy. J Am Chem Soc 137:1850–1861

    Article  PubMed  CAS  Google Scholar 

  107. Bamann C, Gueta R, Kleinlogel S et al (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49:267–278

    Article  CAS  PubMed  Google Scholar 

  108. Nack M, Radu I, Gossing M et al (2010) The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156. Photochem Photobiol Sci 9:194–198

    Article  CAS  PubMed  Google Scholar 

  109. Miyazaki KW, Miyazaki K, Tanaka KF et al (2014) Optogenetic activation of dorsal Raphe serotonin neurons enhances patience for future rewards. Curr Biol 24:2033–2040

    Article  CAS  PubMed  Google Scholar 

  110. Herman AM, Huang L, Murphey DK et al (2014) Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2. eLife 2014:1–18

    Google Scholar 

  111. Schmitt BM, Koepsell H (2002) An improved method for real-time monitoring of membrane capacitance in Xenopus laevis oocytes. Biophys J 82:1345–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sehnal D, Vařeková RS, Berka K et al (2013) MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform 5:1–13

    Article  CAS  Google Scholar 

  113. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Arroyo S, Bennett C, Aziz D et al (2012) Prolonged disynaptic inhibition in the cortex mediated by slow, non-α7 nicotinic excitation of a specific subset of cortical interneurons. J Neurosci 32:3859–3864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jego S, Glasgow SD, Herrera CG et al (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16:1637–1643

    Article  CAS  PubMed  Google Scholar 

  116. Sharp AA, Fromherz S (2011) Optogenetic regulation of leg movement in midstage chick embryos through peripheral nerve stimulation. J Neurophysiol 106:2776–2782

    Article  PubMed  Google Scholar 

  117. Erbguth K, Prigge M, Schneider F et al (2012) Bimodal activation of different neuron classes with the spectrally red-shifted Channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS One 7

    Google Scholar 

  118. Hooks BM, Lin JY, Guo C et al (2015) Dual-channel circuit mapping reveals sensorimotor convergence in the primary motor cortex. J Neurosci 35:4418–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our colleagues for providing action spectra of selected ChRs: Franziska Schneider (C1V1, C1V1-E122T–E162T), Christiane Grimm (ReaChR), and Johannes Vierock (CsChrimson). We are also in debt to Mathias Mahn, Simon Wiegert, Yoav Printz, Kirstin Eisenhauer, and Tess Oram for proofreading the manuscript and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Prigge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wietek, J., Prigge, M. (2016). Enhancing Channelrhodopsins: An Overview. In: Kianianmomeni, A. (eds) Optogenetics. Methods in Molecular Biology, vol 1408. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3512-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3512-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3510-9

  • Online ISBN: 978-1-4939-3512-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics