Paired Recordings from Synaptically Coupled Neurones in Acute Neocortical Slices

  • Dirk FeldmeyerEmail author
  • Gabriele Radnikow
Part of the Neuromethods book series (NM, volume 113)


The minimal element of a neuronal network is the microcircuit between a single pre- and postsynaptic neurone. To date, a detailed analysis of individual synaptic connections is only possible using paired or multiple recordings from synaptically coupled neurones. No other electrophysiological or optophysiological technique allows a correlated functional and structural characterization of both pre- and postsynaptic neurone, even down to the electron microscopic level. Paired recording studies have shown that a full identification of the neuronal elements in a synaptic microcircuit is necessary to fully understand its connectivity and synaptic dynamics. Furthermore, a description of the dendritic and axonal projection pattern makes it possible to elucidate synaptic connectivity rules, e.g., whether it is random or highly specific. Paired recordings can also be used in combination with pharmacological interventions, e.g., to characterize the role of different ion channel subtypes in synaptic transmission and their modulation. Finally, paired recordings also allow more challenging studies such as a quantal analysis of an identified synaptic connection or the regulation of synaptic transmission by neurotransmitters acting on G protein-coupled receptors. Taken together, paired recordings from synaptically coupled neurones are a powerful technique that helps to describe the properties of synaptic microcircuits, which are the basic building blocks of large-scale neuronal networks in the brain.

Key words

Acute brain slices Paired recordings Biocytin staining Postsynaptic potentials Synaptic contacts Connectivity Neuronal morphology 


  1. 1.
    Agmon A, Connors BW (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41:365–379CrossRefPubMedGoogle Scholar
  2. 2.
    Land PW, Kandler K (2002) Somatotopic organization of rat thalamocortical slices. J Neurosci Methods 119:15–21CrossRefPubMedGoogle Scholar
  3. 3.
    Cruikshank SJ, Rose HJ, Metherate R (2002) Auditory thalamocortical synaptic transmission in vitro. J Neurophysiol 87:361–384CrossRefPubMedGoogle Scholar
  4. 4.
    MacLean JN, Fenstermaker V, Watson BO et al (2006) A visual thalamocortical slice. Nat Methods 3:129–134. doi: 10.1038/nmeth849Google Scholar
  5. 5.
    Smeal RM, Gaspar RC, Keefe KA et al (2007) A rat brain slice preparation for characterizing both thalamostriatal and corticostriatal afferents. J Neurosci Methods 159:224–235. doi: 10.1016/j.jneumeth.2006.07.007 CrossRefPubMedGoogle Scholar
  6. 6.
    Llano DA, Slater BJ, Lesicko AM et al (2014) An auditory colliculothalamocortical brain slice preparation in mouse. J Neurophysiol 111:197–207. doi: 10.1152/jn.00605.2013 CrossRefPubMedGoogle Scholar
  7. 7.
    Feldmeyer D, Radnikow G (2009) Developmental alterations in the functional properties of excitatory neocortical synapses. J Physiol 587:1889–1896. doi: 10.1113/jphysiol.2009.169458 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Debanne D, Boudkkazi S, Campanac E et al (2008) Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices. Nat Protoc 3:1559–1568, doi: nprot.2008.147 10.1038CrossRefPubMedGoogle Scholar
  9. 9.
    Radnikow G, Günter RH, Marx M et al (2012) Morpho-functional mapping of cortical networks in brain slice preparations using paired electrophysiological recordings. In: Fellin T, Halassa M (eds) Neuromethods: neuronal network analysis. Neuromethods. Springer Protocols, vol 67. Humana Press. An imprint of Springer Science + Business Media, LLC 2011, New York, pp 405–431. doi:  10.1007/7657_2011_14
  10. 10.
    Qi G, Radnikow G, Feldmeyer D (2015) Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings. J Vis Exp 95:52358. doi: 10.3791/52358 Google Scholar
  11. 11.
    Silver RA, Lübke J, Sakmann B et al (2003) High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302:1981–1984. doi: 10.1126/Science.1087160 CrossRefPubMedGoogle Scholar
  12. 12.
    Biró AA, Holderith NB, Nusser Z (2005) Quantal size is independent of the release probability at hippocampal excitatory synapses. J Neurosci 25:223–232. doi: 10.1523/JNEUROSCI.3688-04.2005Google Scholar
  13. 13.
    Biró AA, Holderith NB, Nusser Z (2006) Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. J Neurosci 26:12487–12496. doi: 10.1523/JNEUROSCI.3106-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Eggermann E, Feldmeyer D (2009) Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4. Proc Natl Acad Sci U S A 106:11753–11758. doi: 10.1073/pnas.0810062106 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    van Aerde KI, Qi G, Feldmeyer D (2015) Cell type-specific effects of adenosine on cortical neurons. Cereb Cortex 25:772–787. doi: 10.1093/cercor/bht274 CrossRefPubMedGoogle Scholar
  16. 16.
    Packer AM, McConnell DJ, Fino E et al (2013) Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. Cereb Cortex 23:2790–2802. doi: 10.1093/cercor/bhs210 CrossRefPubMedGoogle Scholar
  17. 17.
    Fino E, Yuste R (2011) Dense inhibitory connectivity in neocortex. Neuron 69:1188–1203. doi: 10.1016/j.neuron.2011.02.025 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Koelbl C, Helmstaedter M, Lübke J et al (2015) A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity. Cereb Cortex 25:713–725. doi: 10.1093/cercor/bht263 CrossRefPubMedGoogle Scholar
  19. 19.
    Holmgren C, Harkany T, Svennenfors B et al (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol 551:139–153CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lefort S, Tomm C, Floyd Sarria JC et al (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61:301–316. doi: 10.1016/j.neuron.2008.12.020 CrossRefPubMedGoogle Scholar
  21. 21.
    Feldmeyer D, Lübke J, Sakmann B (2006) Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol 575:583–602. doi: 10.1113/jphysiol.2006.105106 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Feldmeyer D (2012) Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat 6:24. doi: 10.3389/fnana.2012.00024 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sjöström PJ, Häusser M (2006) A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227–238. doi: 10.1016/j.neuron.2006.06.017 CrossRefPubMedGoogle Scholar
  24. 24.
    Buchanan KA, Blackman AV, Moreau AW et al (2012) Target-specific expression of presynaptic NMDA receptors in neocortical microcircuits. Neuron 75:451–466. doi: 10.1016/j.neuron.2012.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Geiger JR, Lübke J, Roth A et al (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009–1023CrossRefPubMedGoogle Scholar
  26. 26.
    Feldmeyer D, Egger V, Lübke J et al (1999) Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single “barrel” of developing rat somatosensory cortex. J Physiol 521:169–190CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195:481–492CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405CrossRefPubMedGoogle Scholar
  29. 29.
    Tsodyks M, Wu S (2013) Short-term synaptic plasticity. Scholarpedia 8:3153. doi: 10.4249/scholarpedia.3153 CrossRefGoogle Scholar
  30. 30.
    Reyes A, Lujan R, Rozov A et al (1998) Target-cell-specific facilitation and depression in neocortical circuits. Nat Neurosci 1:279–285CrossRefPubMedGoogle Scholar
  31. 31.
    Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90:2987–3000CrossRefPubMedGoogle Scholar
  32. 32.
    Ascoli GA, Alonso-Nanclares L, Anderson SA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568. doi: 10.1038/nrn2402 CrossRefPubMedGoogle Scholar
  33. 33.
    Bolshakov VY, Siegelbaum SA (1995) Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269:1730–1734CrossRefPubMedGoogle Scholar
  34. 34.
    Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A 95:5323–5328CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94:719–723CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Silver RA, Traynelis SF, Cull-Candy SG (1992) Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355:163–166CrossRefPubMedGoogle Scholar
  37. 37.
    Kidd FL, Coumis U, Collingridge GL et al (2002) A presynaptic kainate receptor is involved in regulating the dynamic properties of thalamocortical synapses during development. Neuron 34:635–646CrossRefPubMedGoogle Scholar
  38. 38.
    Kidd FL, Isaac JT (1999) Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature 400:569–573CrossRefPubMedGoogle Scholar
  39. 39.
    Chittajallu R, Pelkey KA, McBain CJ (2013) Neurogliaform cells dynamically regulate somatosensory integration via synapse-specific modulation. Nat Neurosci 16:13–15. doi: 10.1038/nn.3284 CrossRefPubMedGoogle Scholar
  40. 40.
    Marx M, Günter RH, Hucko W et al (2012) Improved biocytin labeling and neuronal 3D reconstruction. Nat Protoc 7:394–407. doi: 10.1038/nprot.2011.449 CrossRefPubMedGoogle Scholar
  41. 41.
    Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11, doi:0165-0270(88)90114-8Google Scholar
  42. 42.
    Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40:1457–1463CrossRefPubMedGoogle Scholar
  43. 43.
    Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775CrossRefPubMedGoogle Scholar
  44. 44.
    Hsu SM, Raine L, Fanger H (1981) The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. Am J Clin Pathol 75:816–821CrossRefPubMedGoogle Scholar
  45. 45.
    Egger V, Nevian T, Bruno RM (2008) Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex. Cereb Cortex 18:876–889. doi: 10.1093/cercor/bhm126 CrossRefPubMedGoogle Scholar
  46. 46.
    Lübke J, Roth A, Feldmeyer D et al (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13:1051–1063CrossRefPubMedGoogle Scholar
  47. 47.
    Feldmeyer D, Roth A, Sakmann B (2005) Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J Neurosci 25:3423–3431. doi: 10.1523/JNEUROSCI.5227-04.2005Google Scholar
  48. 48.
    Helmstaedter MN, Feldmeyer D (2010) Axons predict neuronal connectivity within and between cortical columns and serve as primary classifiers of interneurons in a cortical column. In: Feldmeyer D, Lübke JHR (eds) New aspects of axonal structure and function, 1st edn. Springer Science + Business Media, New York, pp 141–155. doi: 10.1007/978-1-4419-1676-1_8 CrossRefGoogle Scholar
  49. 49.
    Narayanan RT, Egger R, Johnson AS et al (2015) Beyond columnar organization: cell type- and target layer-specific principles of horizontal axon projection patterns in rat vibrissal cortex. Cereb Cortex. doi: 10.1093/cercor/bhv053 Google Scholar
  50. 50.
    Oberlaender M, Boudewijns ZS, Kleele T et al (2011) Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc Natl Acad Sci U S A 108:4188–4193. doi: 10.1073/pnas.1100647108 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pichon F, Nikonenko I, Kraftsik R et al (2012) Intracortical connectivity of layer VI pyramidal neurons in the somatosensory cortex of normal and barrelless mice. Eur J Neurosci 35:855–869. doi: 10.1111/j.1460-9568.2012.08011.x CrossRefPubMedGoogle Scholar
  52. 52.
    Packer AM, Yuste R (2011) Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J Neurosci 31:13260–13271. doi: 10.1523/JNEUROSCI.3131-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jiang X, Wang G, Lee AJ et al (2013) The organization of two new cortical interneuronal circuits. Nat Neurosci 16:210–218. doi: 10.1038/nn.3305 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lee AJ, Wang G, Jiang X et al (2014) Canonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuits. Cereb Cortex. doi: 10.1093/cercor/bhu020 Google Scholar
  55. 55.
    Qi G, Feldmeyer D (2015) Dendritic target region-specific formation of synapses between excitatory layer 4 neurons and layer 6 pyramidal cells. Cereb Cortex. doi: 10.1093/cercor/bhu334 PubMedCentralGoogle Scholar
  56. 56.
    Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457:1133–1136. doi: 10.1038/nature07658 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Brown SP, Hestrin S (2009) Cell-type identity: a key to unlocking the function of neocortical circuits. Curr Opin Neurobiol 19:415–421. doi: 10.1016/j.conb.2009.07.011 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Holtmaat A, Randall J, Cane M (2013) Optical imaging of structural and functional synaptic plasticity in vivo. Eur J Pharmacol 719:128–136. doi: 10.1016/j.ejphar.2013.07.020 CrossRefPubMedGoogle Scholar
  59. 59.
    Frank MG (2012) Erasing synapses in sleep: is it time to be SHY? Neural Plast 2012:264378. doi: 10.1155/2012/264378 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81:12–34. doi: 10.1016/j.neuron.2013.12.025 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Greenhill SD, Juczewski K, de Haan AM et al (2015) Neurodevelopment. Adult cortical plasticity depends on an early postnatal critical period. Science 349:424–427. doi: 10.1126/science.aaa8481 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Neuroscience and MedicineINM-2, Research Centre JülichJülichGermany
  2. 2.Department of Psychiatry, Psychotherapy and Psychosomatics, Medical SchoolRWTH Aachen UniversityAachenGermany
  3. 3.Jülich-Aachen Research Alliance-Brain, Translational Brain MedicineAachenGermany

Personalised recommendations