Skip to main content

Optogenetic Dissection of the Striatal Microcircuitry

  • 1568 Accesses

Part of the Neuromethods book series (NM,volume 113)

Abstract

The striatum is the principal input structure of the basal ganglia, comprised almost entirely of inhibitory neurons, which include projection neurons and a small yet diverse population of interneurons. Striatal afferents include glutamatergic inputs from the neocortex and thalamus, and massive dopaminergic input from the substantia nigra pars compacta. In order to better understand the operational roles of striatum, it is essential to have a good grasp of its microcircuitry, namely a detailed description of its neuron types and their synaptic connectivity. Traditionally, studying synaptic connectivity between identified neurons was performed using paired and multineuron intracellular recordings in brain slices. The recent introduction of optogenetic methods offers new experimental approaches for microcircuit analysis, one of which is the combination of whole-cell patch-clamp recordings and optogenetic activation of presynaptic neurons. In this chapter we present recent advances in our understanding of the striatal microcircuitry when studied with electrophysiological and optogenetic methods. We first introduce the different neuron types comprising the striatal microcircuitry and describe their basic interconnectivity as inferred from electrophysiological measurements. We then present a few recent studies performed primarily in striatal and corticostriatal slices, where the powerful combination of electrophysiology and optogenetics revised our understanding of striatal functional organization.

Key words

  • Optogenetics
  • Channelrhodopsin
  • Patch clamp
  • Striatum
  • Slice
  • In vivo
  • Striatal microcircuit
  • Feedforward inhibition

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-3411-9_8
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-3411-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kincaid AE, Zheng T, Wilson CJ (1998) Connectivity and convergence of single corticostriatal axons. J Neurosci 18(12):4722–4731

    CAS  PubMed  Google Scholar 

  2. Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96(3):451–474, doi: S0306-4522(99)00575-8 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  3. Calabresi P, Pisani A, Mercuri NB, Bernardi G (1996) The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci 19(1):19–24, doi: 0166223696818625 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  4. Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28(44):11221–11230. doi:10.1523/JNEUROSCI.2780-08.2008, 28/44/11221 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  5. Gerfen CR (2004) Basal ganglia. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San Diego, London, pp 455–508

    CrossRef  Google Scholar 

  6. Wilson CJ, Groves PM (1981) Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res 220(1):67–80, doi: 0006-8993(81)90211-0 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  7. Berke JD, Okatan M, Skurski J, Eichenbaum HB (2004) Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 43(6):883–896. doi:10.1016/j.neuron.2004.08.035, S0896627304005628 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  8. Kawaguchi Y, Wilson C, Emson P (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10(10):3421–3438

    CAS  PubMed  Google Scholar 

  9. Nisenbaum ES, Xu ZC, Wilson CJ (1994) Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J Neurophysiol 71(3):1174–1189

    CAS  PubMed  Google Scholar 

  10. Nisenbaum ES, Wilson CJ (1995) Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J Neurosci 15(6):4449–4463

    CAS  PubMed  Google Scholar 

  11. Nisenbaum ES, Wilson CJ, Foehring RC, Surmeier DJ (1996) Isolation and characterization of a persistent potassium current in neostriatal neurons. J Neurophysiol 76(2):1180–1194

    CAS  PubMed  Google Scholar 

  12. Wilson C (1993) The generation of natural firing patterns in neostriatal neurons. Prog Brain Res 99:277–297

    CAS  CrossRef  PubMed  Google Scholar 

  13. Wilson C, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16(7):2397–2410

    CAS  PubMed  Google Scholar 

  14. Mahon S, Deniau JM, Charpier S (2001) Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. Cereb Cortex 11(4):360–373

    CAS  CrossRef  PubMed  Google Scholar 

  15. Mahon S, Vautrelle N, Pezard L, Slaght S, Deniau J, Chouvet G, Charpier S (2006) Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle. J Neurosci 26(48):12587–12595

    CAS  CrossRef  PubMed  Google Scholar 

  16. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    CAS  CrossRef  PubMed  Google Scholar 

  17. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285

    CAS  CrossRef  PubMed  Google Scholar 

  18. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425, doi: S0301-0082(96)00042-1 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  19. Albin R, Young A, Penney J (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    CAS  CrossRef  PubMed  Google Scholar 

  20. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432

    CAS  CrossRef  PubMed  Google Scholar 

  21. Gong S, Zheng C, Doughty M, Losos K, Didkovsky N, Schambra U, Nowak N, Joyner A, Leblanc G, Hatten M, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925

    CAS  CrossRef  PubMed  Google Scholar 

  22. Cepeda C, André V, Yamazaki I, Wu N, Kleiman-Weiner M, Levine M (2008) Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur J Neurosci 27(3):671–682

    CrossRef  PubMed  Google Scholar 

  23. Gertler T, Chan C, Surmeier D (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28(43):10814–10824

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Planert H, Berger TK, Silberberg G (2013) Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine. PLoS One 8(3):e57054. doi:10.1371/journal.pone.0057054

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Kreitzer A, Malenka R (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445(7128):643–647

    CAS  CrossRef  PubMed  Google Scholar 

  26. Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel AM, Kimura M (1994) Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14(6):3969–3984

    CAS  PubMed  Google Scholar 

  27. Bennett BD, Callaway JC, Wilson CJ (2000) Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci 20(22):8493–8503, doi: 20/22/8493 [pii]

    CAS  PubMed  Google Scholar 

  28. Oldenburg IA, Ding JB (2011) Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr Opin Neurobiol 21(3):425–432. doi:10.1016/j.conb.2011.04.004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34(13):4509–4518. doi:10.1523/JNEUROSCI.5071-13.2014

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43(1):133–143. doi:10.1016/j.neuron.2004.06.012

    CAS  CrossRef  PubMed  Google Scholar 

  31. Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13(11):4908–4923

    CAS  PubMed  Google Scholar 

  32. Freund TF (2003) Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26(9):489–495. doi:10.1016/S0166-2236(03)00227-3

    CAS  CrossRef  PubMed  Google Scholar 

  33. Munoz-Manchado AB, Foldi C, Szydlowski S, Sjulson L, Farries M, Wilson C, Silberberg G, Hjerling-Leffler J (2014) Novel striatal GABAergic interneuron populations labeled in the 5HT3aEGFP mouse. Cereb Cortex. doi:10.1093/cercor/bhu179

    PubMed  PubMed Central  Google Scholar 

  34. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18(12):527–535, doi: 0166-2236(95)98374-8 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  35. Ibáñez-Sandoval O, Tecuapetla F, Unal B, Shah F, KoÛs T, Tepper JM (2011) A novel functionally distinct subtype of striatal neuropeptide Y interneuron. J Neurosci 31(46):16757–16769. doi:10.1523/JNEUROSCI.2628-11.2011, 31/46/16757 [pii]

    CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7(6):476–486

    CAS  CrossRef  PubMed  Google Scholar 

  37. Szabadics J, Tamas G, Soltesz I (2007) Different transmitter transients underlie presynaptic cell type specificity of GABAA, slow and GABAA, fast. Proc Natl Acad Sci U S A 104(37):14831–14836. doi:10.1073/pnas.0707204104

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Tamas G, Lorincz A, Simon A, Szabadics J (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299(5614):1902–1905. doi:10.1126/science.1082053

    CAS  CrossRef  PubMed  Google Scholar 

  39. Bennett BD, Bolam JP (1993) Characterization of calretinin-immunoreactive structures in the striatum of the rat. Brain Res 609(1–2):137–148

    CAS  CrossRef  PubMed  Google Scholar 

  40. Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14(6):685–692. doi:10.1016/j.conb.2004.10.003, S0959-4388(04)00155-2 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  41. Wu Y, Parent A (2000) Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Brain Res 863(1–2):182–191

    CAS  CrossRef  PubMed  Google Scholar 

  42. Ibáñez-Sandoval O, Tecuapetla F, Unal B, Shah F, Koós T, Tepper JM (2010) Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum. J Neurosci 30(20):6999–7016. doi:10.1523/JNEUROSCI.5996-09.2010, 30/20/6999 [pii]

    CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30(50):16796–16808. doi:10.1523/JNEUROSCI.1869-10.2010

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30(44):14610–14618. doi:10.1523/JNEUROSCI.1623-10.2010, 30/44/14610 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  45. Wilson CJ (2007) GABAergic inhibition in the neostriatum. Prog Brain Res 160:91–110. doi:10.1016/S0079-6123(06)60006-X, S0079-6123(06)60006-X [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  46. Koós T, Tepper JM (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2(5):467–472. doi:10.1038/8138

    CrossRef  PubMed  Google Scholar 

  47. Kita H, Kosaka T, Heizmann CW (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 536(1–2):1–15, doi: 0006-8993(90)90002-S [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  48. Mallet N, Le Moine C, Charpier S, Gonon F (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25(15):3857–3869

    CAS  CrossRef  PubMed  Google Scholar 

  49. Tunstall MJ, Oorschot DE, Kean A, Wickens JR (2002) Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol 88(3):1263–1269

    PubMed  Google Scholar 

  50. Czubayko U, Plenz D (2002) Fast synaptic transmission between striatal spiny projection neurons. Proc Natl Acad Sci U S A 99(24):15764–15769. doi:10.1073/pnas.242428599, 242428599 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Guzman JN, Hernandez A, Galarraga E, Tapia D, Laville A, Vergara R, Aceves J, Bargas J (2003) Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. J Neurosci 23(26):8931–8940

    CAS  PubMed  Google Scholar 

  52. Koos T, Tepper JM, Wilson CJ (2004) Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J Neurosci 24(36):7916–7922. doi:10.1523/JNEUROSCI.2163-04.2004, 24/36/7916 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  53. Gustafson N, Gireesh-Dharmaraj E, Czubayko U, Blackwell KT, Plenz D (2006) A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro. J Neurophysiol 95(2):737–752. doi:10.1152/jn.00802.2005, 00802.2005 [pii]

    CrossRef  PubMed  Google Scholar 

  54. Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30(6):2223–2234. doi:10.1523/JNEUROSCI.4870-09.2010, 30/6/2223 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  55. Gittis AH, Leventhal DK, Fensterheim BA, Pettibone JR, Berke JD, Kreitzer AC (2011) Selective inhibition of striatal fast-spiking interneurons causes dyskinesias. J Neurosci 31(44):15727–15731. doi:10.1523/JNEUROSCI.3875-11.2011, 31/44/15727 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  56. Planert H, Szydlowski S, Hjorth J, Grillner S, Silberberg G (2010) Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways. J Neurosci 30(9):3499–3507. doi:10.1523/JNEUROSCI.5139-09.2010, 30/9/3499 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  57. Taverna S, Ilijic E, Surmeier D (2008) Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. J Neurosci 28(21):5504–5512

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Adermark L (2011) Modulation of endocannabinoid-mediated long-lasting disinhibition of striatal output by cholinergic interneurons. Neuropharmacology 61(8):1314–1320. doi:10.1016/j.neuropharm.2011.07.039

    CAS  CrossRef  PubMed  Google Scholar 

  59. Packer AM, Yuste R (2011) Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J Neurosci 31(37):13260–13271. doi:10.1523/JNEUROSCI.3131-11.2011, 31/37/13260 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  60. Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457(7233):1133–1136. doi:10.1038/nature07658, nature07658 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500(Pt 2):409–440

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Szydlowski SN, Pollak Dorocic I, Planert H, Carlen M, Meletis K, Silberberg G (2013) Target selectivity of feedforward inhibition by striatal fast-spiking interneurons. J Neurosci 33(4):1678–1683. doi:10.1523/JNEUROSCI.3572-12.2013

    CAS  CrossRef  PubMed  Google Scholar 

  63. Yung KK, Smith AD, Levey AI, Bolam JP (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat: evidence from dopamine receptor and neuropeptide immunostaining. Eur J Neurosci 8(5):861–869

    CAS  CrossRef  PubMed  Google Scholar 

  64. Pereda AE, Curti S, Hoge G, Cachope R, Flores CE, Rash JE (2012) Gap junction-mediated electrical transmission: REGULATORY mechanisms and plasticity. Biochim Biophys Acta. doi: S0005-2736(12)00184-8 [pii] 10.1016/j.bbamem.2012.05.026

    Google Scholar 

  65. Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402(6757):72–75

    CAS  CrossRef  PubMed  Google Scholar 

  66. Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402(6757):75–79. doi:10.1038/47035

    CAS  CrossRef  PubMed  Google Scholar 

  67. Berke JD (2008) Uncoordinated firing rate changes of striatal fast-spiking interneurons during behavioral task performance. J Neurosci 28(40):10075–10080. doi:10.1523/JNEUROSCI.2192-08.2008, 28/40/10075 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Hjorth J, Blackwell KT, Kotaleski JH (2009) Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. J Neurosci 29(16):5276–5286. doi:10.1523/JNEUROSCI.6031-08.2009, 29/16/5276 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94(2):719–723

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  70. Thomson AM, Deuchars J (1997) Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb Cortex 7(6):510–522

    CAS  CrossRef  PubMed  Google Scholar 

  71. Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A 95(9):5323–5328

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  72. Taverna S, van Dongen YC, Groenewegen HJ, Pennartz CM (2004) Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. J Neurophysiol 91(3):1111–1121. doi:10.1152/jn.00892.2003, 00892.2003 [pii]

    CrossRef  PubMed  Google Scholar 

  73. Venance L, Glowinski J, Giaume C (2004) Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices. J Physiol 559(Pt 1):215–230. doi:10.1113/jphysiol.2004.065672, jphysiol.2004.065672 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  74. Klaus A, Planert H, Hjorth JJ, Berke JD, Silberberg G, Kotaleski JH (2011) Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact. Front Syst Neurosci 5:57. doi:10.3389/fnsys.2011.00057

    CrossRef  PubMed  PubMed Central  Google Scholar 

  75. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  76. Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30(5):211–219

    CAS  CrossRef  PubMed  Google Scholar 

  77. Kreitzer A, Malenka R (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60(4):543–554

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  78. Fino E, Venance L (2011) Spike-timing dependent plasticity in striatal interneurons. Neuropharmacology 60(5):780–788. doi:10.1016/j.neuropharm.2011.01.023, S0028-3908(11)00026-8 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  79. Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58(7):951–961. doi:10.1016/j.neuropharm.2010.01.008, S0028-3908(10)00022-5 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  80. Adermark L, Lovinger DM (2009) Frequency-dependent inversion of net striatal output by endocannabinoid-dependent plasticity at different synaptic inputs. J Neurosci 29(5):1375–1380. doi:10.1523/JNEUROSCI.3842-08.2009, 29/5/1375 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  81. Adermark L, Lovinger DM (2007) Retrograde endocannabinoid signaling at striatal synapses requires a regulated postsynaptic release step. Proc Natl Acad Sci U S A 104(51):20564–20569. doi:10.1073/pnas.0706873104

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  82. Adermark L, Talani G, Lovinger DM (2009) Endocannabinoid-dependent plasticity at GABAergic and glutamatergic synapses in the striatum is regulated by synaptic activity. Eur J Neurosci 29(1):32–41. doi:10.1111/j.1460-9568.2008.06551.x, EJN6551 [pii]

    CrossRef  PubMed  PubMed Central  Google Scholar 

  83. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. doi:10.1038/nn1525, nn1525 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  84. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71(1):9–34. doi:10.1016/j.neuron.2011.06.004

    CAS  CrossRef  PubMed  Google Scholar 

  85. Chuhma N, Tanaka KF, Hen R, Rayport S (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31(4):1183–1192. doi:10.1523/JNEUROSCI.3833-10.2011, 31/4/1183 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  86. Gerfen CR, Baimbridge KG, Miller JJ (1985) The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci U S A 82(24):8780–8784

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  87. Paladini CA, Celada P, Tepper JM (1999) Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABA(A) receptors in vivo. Neuroscience 89(3):799–812

    CAS  CrossRef  PubMed  Google Scholar 

  88. Rav-Acha M, Sagiv N, Segev I, Bergman H, Yarom Y (2005) Dynamic and spatial features of the inhibitory pallidal GABAergic synapses. Neuroscience 135(3):791–802. doi:10.1016/j.neuroscience.2005.05.069

    CAS  CrossRef  PubMed  Google Scholar 

  89. English DF, Ibanez-Sandoval O, Stark E, Tecuapetla F, Buzski G, Deisseroth K, Tepper JM, Koos T (2012) GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci 15(1):123–130. doi:10.1038/nn.2984, nn.2984 [pii]

    CAS  CrossRef  Google Scholar 

  90. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75(1):58–64. doi:10.1016/j.neuron.2012.04.038, S0896-6273(12)00443-6 [pii]

    CAS  CrossRef  PubMed  Google Scholar 

  91. Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490(7419):262–266. doi:10.1038/nature11466, nature11466 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  92. Nelson AB, Hammack N, Yang CF, Shah NM, Seal RP, Kreitzer AC (2014) Striatal cholinergic interneurons Drive GABA release from dopamine terminals. Neuron 82(1):63–70. doi:10.1016/j.neuron.2014.01.023

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  93. Chuhma N, Mingote S, Moore H, Rayport S (2014) Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron 81(4):901–912. doi:10.1016/j.neuron.2013.12.027

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  94. Karnani MM, Agetsuma M, Yuste R (2014) A blanket of inhibition: functional inferences from dense inhibitory connectivity. Curr Opin Neurobiol 26:96–102. doi:10.1016/j.conb.2013.12.015

    CAS  CrossRef  PubMed  Google Scholar 

  95. Lei W, Jiao Y, Del Mar N, Reiner A (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24(38):8289–8299

    CAS  CrossRef  PubMed  Google Scholar 

  96. Kress GJ, Yamawaki N, Wokosin DL, Wickersham IR, Shepherd GM, Surmeier DJ (2013) Convergent cortical innervation of striatal projection neurons. Nat Neurosci 16(6):665–667. doi:10.1038/nn.3397

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  97. Mathur BN, Tanahira C, Tamamaki N, Lovinger DM (2013) Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci 16(9):1275–1283. doi:10.1038/nn.3478

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  98. Kravitz A, Freeze B, Parker P, Kay K, Thwin M, Deisseroth K, Kreitzer A (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306):622–626. doi:10.1038/nature09159, nature09159 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  99. Smith KS, Graybiel AM (2013) Using optogenetics to study habits. Brain Res 1511:102–114. doi:10.1016/j.brainres.2013.01.008

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  100. Witten IB, Lin SC, Brodsky M, Prakash R, Diester I, Anikeeva P, Gradinaru V, Ramakrishnan C, Deisseroth K (2010) Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330(6011):1677–1681. doi:10.1126/science.1193771, 330/6011/1677 [pii]

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  101. Katz Y, Yizhar O, Staiger J, Lampl I (2013) Optopatcher – an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation. J Neurosci Methods 214(1):113–117. doi:10.1016/j.jneumeth.2013.01.017

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilad Silberberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Silberberg, G., Planert, H. (2016). Optogenetic Dissection of the Striatal Microcircuitry. In: Korngreen, A. (eds) Advanced Patch-Clamp Analysis for Neuroscientists. Neuromethods, vol 113. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3411-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3411-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3409-6

  • Online ISBN: 978-1-4939-3411-9

  • eBook Packages: Springer Protocols