Acousto-optical Scanning-Based High-Speed 3D Two-Photon Imaging In Vivo

Part of the Neuromethods book series (NM, volume 113)


Recording of the concerted activity of neuronal assemblies and the dendritic and axonal signal integration of downstream neurons pose different challenges, preferably a single recording system should perform both operations. We present a three-dimensional (3D), high-resolution, fast, acousto-optic two-photon microscope with random-access and continuous trajectory scanning modes reaching a cubic millimeter scan range (now over 950 × 950 × 3000 μm3) which can be adapted to imaging different spatial scales. The resolution of the system allows simultaneous functional measurements in many fine neuronal processes, even in dendritic spines within a central core (>290 × 290 × 200 μm3) of the total scanned volume. Furthermore, the PSF size remained sufficiently low (PSF x  < 1.9 μm, PSF z  < 7.9 μm) to target individual neuronal somata in the whole scanning volume for simultaneous measurement of activity from hundreds of cells. The system contains new design concepts: it allows the acoustic frequency chirps in the deflectors to be adjusted dynamically to compensate for astigmatism and optical errors; it physically separates the z-dimension focusing and lateral scanning functions to optimize the lateral AO scanning range; it involves a custom angular compensation unit to diminish off-axis angular dispersion introduced by the AO deflectors, and it uses a high-NA, wide-field objective and high-bandwidth custom AO deflectors with large apertures. We demonstrate the use of the microscope at different spatial scales by first showing 3D optical recordings of action potential back propagation and dendritic Ca2+ spike forward propagation in long dendritic segments in vitro, at near-microsecond temporal resolution. Second, using the same microscope we show volumetric random-access Ca2+ imaging of spontaneous and visual stimulation-evoked activity from hundreds of cortical neurons in the visual cortex in vivo. The selection of active neurons in a volume that respond to a given stimulus was aided by the real-time data analysis and the 3D interactive visualization accelerated selection of regions of interest.

Key words

Two-photon Acousto-optical Dendritic imaging Network imaging 3D Three-dimensional microscopy Angular dispersion compensation In vivo imaging Backpropagating action potentials Temporal super-resolution Dendritic spikes 3D scanning 3D virtual reality environment 


  1. 1.
    Johnston D, Narayanan R (2008) Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31(6):309–316CrossRefPubMedGoogle Scholar
  2. 2.
    Katona G et al (2011) Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons. Proc Natl Acad Sci U S A 108(5):2148–2153CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452(7186):436–441CrossRefPubMedGoogle Scholar
  4. 4.
    Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221CrossRefPubMedGoogle Scholar
  5. 5.
    Rozsa B et al (2008) Dendritic nicotinic receptors modulate backpropagating action potentials and long-term plasticity of interneurons. Eur J Neurosci 27(2):364–377CrossRefPubMedGoogle Scholar
  6. 6.
    Rozsa B et al (2004) Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons. J Neurosci 24(3):661–670CrossRefPubMedGoogle Scholar
  7. 7.
    Ohki K et al (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433(7026):597–603CrossRefPubMedGoogle Scholar
  8. 8.
    Ariav G, Polsky A, Schiller J (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23(21):7750–7758PubMedGoogle Scholar
  9. 9.
    Danilatos GD (1991) Review and outline of environmental SEM at present. J Microsc 162(3):391–402CrossRefGoogle Scholar
  10. 10.
    Kherlopian AR et al (2008) A review of imaging techniques for systems biology. BMC Syst Biol 2:74CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kerr JN, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev Neurosci 9(3):195–205CrossRefPubMedGoogle Scholar
  12. 12.
    Amos WB, White JG, Fordham M (1987) Use of confocal imaging in the study of biological structures. Appl Opt 26(16):3239–3243CrossRefPubMedGoogle Scholar
  13. 13.
    Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10(4):128–138CrossRefGoogle Scholar
  14. 14.
    Petráň M et al (1968) Tandem-scanning reflected-light microscope. J Opt Soc Am 58(5):661–664CrossRefGoogle Scholar
  15. 15.
    Tomer R et al (2012) Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9(7):755–763CrossRefPubMedGoogle Scholar
  16. 16.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76CrossRefPubMedGoogle Scholar
  17. 17.
    Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18(3):351–357CrossRefPubMedGoogle Scholar
  18. 18.
    Goeppert-Mayer M (1931) Ueber Elementarakte mit zwei Quantenspruengen. Ann Phys 9:273CrossRefGoogle Scholar
  19. 19.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940CrossRefPubMedGoogle Scholar
  20. 20.
    Kobat D, Horton NG, Xu C (2011) In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt 16(10):106014CrossRefPubMedGoogle Scholar
  21. 21.
    Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 micron in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28(12):1022–1024CrossRefPubMedGoogle Scholar
  22. 22.
    Niesner R et al (2007) The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys J 93(7):2519–2529CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Prevedel R et al (2014) Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat Methods 11(7):727–730CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Quirin S et al (2014) Simultaneous imaging of neural activity in three dimensions. Front Neural Circuits 8:29CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Quirin S, Peterka DS, Yuste R (2013) Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging. Opt Express 21(13):16007–16021CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Grewe BF et al (2011) Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed Opt Express 2(7):2035–2046CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nikolenko V et al (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circuits 2:5CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gobel W, Kampa BM, Helmchen F (2007) Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods 4(1):73–79CrossRefPubMedGoogle Scholar
  29. 29.
    Cheng A et al (2011) Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat Methods 8(2):139–142CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Holekamp TF, Turaga D, Holy TE (2008) Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57(5):661–672CrossRefPubMedGoogle Scholar
  31. 31.
    Botcherby EJ et al (2012) Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. Proc Natl Acad Sci U S A 109(8):2919–2924CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rozsa B et al (2007) Random access three-dimensional two-photon microscopy. Appl Opt 46(10):1860–1865CrossRefPubMedGoogle Scholar
  33. 33.
    Katona G et al (2012) Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat Methods 9(2):201–208CrossRefPubMedGoogle Scholar
  34. 34.
    Kaplan A, Friedman N, Davidson N (2001) Acousto-optic lens with very fast focus scanning. Opt Lett 26(14):1078–1080CrossRefPubMedGoogle Scholar
  35. 35.
    Fernandez-Alfonso T et al (2014) Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope. J Neurosci Methods 222:69–81CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cotton RJ et al (2013) Three-dimensional mapping of microcircuit correlation structure. Front Neural Circuits 7:151CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kirkby PA, Srinivas Nadella KM, Silver RA (2010) A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Opt Express 18(13):13721–13745CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Duemani Reddy G et al (2008) Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci 11(6):713–720CrossRefPubMedGoogle Scholar
  39. 39.
    Iyer V, Hoogland TM, Saggau P (2006) Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. J Neurophysiol 95(1):535–545CrossRefPubMedGoogle Scholar
  40. 40.
    Reddy GD, Saggau P (2005) Fast three-dimensional laser scanning scheme using acousto-optic deflectors. J Biomed Opt 10(6):064038CrossRefPubMedGoogle Scholar
  41. 41.
    Grewe BF et al (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7(5):399–405CrossRefPubMedGoogle Scholar
  42. 42.
    Proctor B, Wise F (1992) Quartz prism sequence for reduction of cubic phase in a mode-locked Ti:Al(2)O(3) laser. Opt Lett 17(18):1295–1297CrossRefPubMedGoogle Scholar
  43. 43.
    Keren N, Bar-Yehuda D, Korngreen A (2009) Experimentally guided modelling of dendritic excitability in rat neocortical pyramidal neurones. J Physiol 587(Pt 7):1413–1437CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Almog M, Korngreen A (2014) A quantitative description of dendritic conductances and its application to dendritic excitation in layer 5 pyramidal neurons. J Neurosci 34(1):182–196CrossRefPubMedGoogle Scholar
  45. 45.
    Nimmerjahn A et al (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1(1):31–37CrossRefPubMedGoogle Scholar
  46. 46.
    Chiovini B et al (2014) Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves. Neuron 82(4):908–924CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Experimental Medicine of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Pázmány Péter UniversityBudapestHungary

Personalised recommendations