Production of Aromatic Plant Terpenoids in Recombinant Baker’s Yeast

  • Anita Emmerstorfer-AugustinEmail author
  • Harald Pichler
Part of the Methods in Molecular Biology book series (MIMB, volume 1405)


Plant terpenoids are high-value compounds broadly applied as food additives or fragrances in perfumes and cosmetics. Their biotechnological production in yeast offers an attractive alternative to extraction from plants. Here, we provide two optimized protocols for the production of the plant terpenoid trans-nootkatol with recombinant S. cerevisiae by either (I) converting externally added (+)-valencene with resting cells or (II) cultivating engineered self-sufficient production strains. By synthesis of the hydrophobic compounds in self-sufficient production cells, phase transfer issues can be avoided and the highly volatile products can be enriched in and easily purified from n-dodecane, which is added to the cell broth as second phase.

Key words

Plant terpenoids Yeast S. cerevisiae Cytochrome P450 enzymes Biotransformation (+)-Valencene synthase tHMG1 Metabolic engineering 



We thank Prof. Erich Leitner for providing help with GC-FID measurements. We also thank Martin Schürmann, Iwona Kaluzna, Monika Müller, Andreas Kolb, and Daniel Mink (DSM Chemical Technology R and D) for fruitful discussion. This work has been supported by the Federal Ministry of Science, Research and Economy (BMWFW), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, and the Standortagentur Tiroland ZIT—Technology Agency of the City of Vienna through the COMET—Funding Program managed by the Austrian Research Promotion Agency FFG.


  1. 1.
    Salvador JAR, Clark JH (2002) The allylic oxidation of unsaturated steroids by tert-butyl hydroperoxide using surface functionalised silica supported metal catalysts. Green Chem 4:352–356CrossRefGoogle Scholar
  2. 2.
    Majetich G, Behnke M, Hull K (1985) A stereoselective synthesis of (+/-)-nootkatone and (+/-)-valencene via an intramolecular Sakurai reaction. J Org Chem 50:3615–3618CrossRefGoogle Scholar
  3. 3.
    Fraatz MA, Berger RG, Zorn H (2009) Nootkatone––a biotechnological challenge. Appl Microbiol Biotechnol 83:35–41CrossRefPubMedGoogle Scholar
  4. 4.
    Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681CrossRefPubMedGoogle Scholar
  5. 5.
    Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355CrossRefPubMedGoogle Scholar
  6. 6.
    Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H (2014) Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 98:7671–7698CrossRefPubMedGoogle Scholar
  7. 7.
    Zhao Y-J, Cheng Q-Q, Su P, Chen X, Wang X-J, Gao W, Huang L-Q (2014) Research progress relating to the role of cytochrome P450 in the biosynthesis of terpenoids in medicinal plants. Appl Microbiol Biotechnol 98:2371–2383CrossRefPubMedGoogle Scholar
  8. 8.
    Kitaoka N, Lu X, Yang B, Peters RJ (2015) The application of synthetic biology to elucidation of plant mono-, sesqui-, and diterpenoid metabolism. Mol Plant 8:6–16CrossRefPubMedGoogle Scholar
  9. 9.
    Laursen T, Jensen K, Møller BL (2011) Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450. Biochim Biophys Acta 1814:132–138CrossRefPubMedGoogle Scholar
  10. 10.
    Jensen K, Møller BL (2010) Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry 71:132–141CrossRefPubMedGoogle Scholar
  11. 11.
    Bernhardt R, Urlacher VB (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 98:6185–6203CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi S, Yeo Y-S, Zhao Y, O’Maille PE, Greenhagen BT, Noel JP, Coates RM, Chappel J (2007) Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. J Biol Chem 282:31744–31754PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Emmerstorfer A, Wimmer-Teubenbacher M, Wriessnegger T, Leitner E, Muller M, Kaluzna I, Schurmann M, Mink D, Zellnig G, Schwab H, Pichler H (2015) Overexpression of ICE2 stabilizes cytochrome P450 reductase in Saccharomyces cerevisiae and Pichia pastoris. Biotechnol J 10:623–635Google Scholar
  14. 14.
    Wriessnegger T, Augustin P, Engleder M, Leitner E, Muller M, Schurmann M, Mink D, Zellnig G, Schwab H, Pichler H (2014) Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 24:18–29CrossRefPubMedGoogle Scholar
  15. 15.
    Beekwilder J, van Houwelingen A, Cankar K, van Dijk ADJ, de Jong RN, Stoopen G, Bouwmeester H, Achkar J, Sonke T, Bosch D (2014) Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnol J 12:174–182CrossRefPubMedGoogle Scholar
  16. 16.
    Asadollahi MA, Maury J, Møller K, Nielsen KF, Schalk M, Clark A, Nielsen J (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99:666–677CrossRefPubMedGoogle Scholar
  17. 17.
    Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovioch H, Vainstein A (2011) Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab Eng 13:474–481CrossRefPubMedGoogle Scholar
  18. 18.
    Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V (2012) Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. Metab Eng 14:91–103CrossRefPubMedGoogle Scholar
  19. 19.
    Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefPubMedGoogle Scholar
  20. 20.
    Girhard M, Machida K, Itoh M, Schmid RD, Arisawa A, Urlacher VB (2009) Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system. Microb Cell Fact 8:36PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Gavira C, Höfer R, Lesot A, Lambert F, Zucca J, Werck-Reichhart D (2013) Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae. Metab Eng 18:25–35CrossRefPubMedGoogle Scholar
  22. 22.
    Cankar K, van Houwelingen AMML, Bosch HJ, Sonke T, Bouwmeester H, Beekwilder MJ (2011) A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett 585:178–182CrossRefPubMedGoogle Scholar
  23. 23.
    Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21CrossRefPubMedGoogle Scholar
  24. 24.
    Bergman LW (2001) Growth and maintenance of yeast. Methods Mol Biol 177:9–14PubMedGoogle Scholar
  25. 25.
    Liu J, Zhu Y, Du G, Zhou J, Chen J (2013) Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress. J Appl Microbiol 114:482–491CrossRefPubMedGoogle Scholar
  26. 26.
    Brennan TCR, Turner CD, Krömer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2513–2522CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.ACIB - Austrian Centre of Industrial BiotechnologyGrazAustria
  2. 2.Institute of Molecular BiotechnologyNAWI Graz, Graz University of TechnologyGrazAustria

Personalised recommendations