Protoplast Transformation as a Plant-Transferable Transient Expression System

  • Patrícia Duarte
  • Diana Ribeiro
  • Inês Carqueijeiro
  • Sara Bettencourt
  • Mariana SottomayorEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1405)


The direct uptake of DNA by naked plant cells (protoplasts) provides an expression system of exception for the quickly growing research in non-model plants, fuelled by the power of next-generation sequencing to identify novel candidate genes. Here, we describe a simple and effective method for isolation and transformation of protoplasts, and illustrate its application to several plant materials.

Key words

Plant-transferable methodology PEG-mediated transformation Protoplasts Transient expression 



This work was supported by: (1) Fundo Europeu de Desenvolvimento Regional funds through the Operational Competitiveness Programme COMPETE and by National Funds through Fundação para a Ciência e a Tecnologia (FCT) under the projects FCOMP-01-0124-FEDER-037277 (PEst-C/SAU/LA0002/2013), FCOMP-01-0124-FEDER-019664 (PTDC/BIA-BCM/119718/2010) and FCOMP-01-0124-FEDER-028125 (PTDC/BBB-BIO/2231/2012); (2) by the FCT scholarships co-supported by FCT and POPH-QREN (European Social Fund) SFRH/BD/41907/2007 (IC), SFRH/BD/48283/2008 (SB) and SFRH/BPD/20669/2004 (PD); (3) by a Scientific Mecenate Grant from Grupo Jerónimo Martins.


  1. 1.
    Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171CrossRefPubMedGoogle Scholar
  3. 3.
    Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J (2013) Progress in plant protoplast research. Planta 238:991–1003CrossRefGoogle Scholar
  4. 4.
    Cheng SH, Sheen J, Gerrish C, Bolwell GP (2001) Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Lett 503:185–188CrossRefPubMedGoogle Scholar
  5. 5.
    Martens S, Teerib T, Forkmanna G (2002) Heterologous expression of dihydroflavonol 4-reductases from various plants. FEBS Lett 531:453–458CrossRefPubMedGoogle Scholar
  6. 6.
    Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572CrossRefPubMedGoogle Scholar
  7. 7.
    Duarte P, Ribeiro D, Henriques G, Hilliou F, Rocha AS, Lima F, Amorim I, Sottomayor M (2011) Cloning and characterization of a candidate gene from the medicinal plant Catharanthus roseus through transient expression in mesophyll protoplasts. In: Brown GG (ed) Molecular cloning-selected applications in medicine and biology. Intech, Rijeka, pp 291–308Google Scholar
  8. 8.
    Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Li JF, Chung HS, Niu Y, Bush J, McCormack M, Sheen J (2013) Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25:1507–1522PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Faraco M, Di Sansebastiano GP, Spelt K, Koes RE, Quattrocchio FM (2011) One protoplast is not the other! Plant Physiol 156:474–478PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Fontes N, Silva R, Vignault C, Lecourieux F, Geros H, Delrot S (2010) Purification and functional characterization of protoplasts and intact vacuoles from grape cells. BMC Res Notes 3:19PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Sottomayor M, dePinto M, Salema R, DiCosmo F, Pedreno M, Barceló AR (1996) The vacuolar localization of a basic peroxidase isoenzyme responsible for the synthesis of alpha-3',4'-anhydrovinblastine in Catharanthus roseus (L) G. Don leaves. Plant Cell Environ 19:761–767CrossRefGoogle Scholar
  13. 13.
    Zheng HQ, Wang GL, Zhang L (1997) Alfalfa mosaic virus movement protein induces tubules in plant protoplasts. Mol Plant Microbe Interact 10:1010–1014CrossRefGoogle Scholar
  14. 14.
    Ferreres F, Figueiredo R, Bettencourt S, Carqueijeiro I, Oliveira J, Gil-Izquierdo A, Pereira DM, Valentao P, Andrade PB, Duarte P, Barceló AR, Sottomayor M (2011) Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair? J Exp Bot 62:2841–2854CrossRefPubMedGoogle Scholar
  15. 15.
    Zhao W, Yang W, Wei C, Sun G (2011) A simple and efficient method for isolation of pineapple protoplasts. Biotechnol Biotechnol Equip 25:2464–2467CrossRefGoogle Scholar
  16. 16.
    Nagata T, Okada K, Takebe I, Matsui C (1981) Delivery of tobacco mosaic-virus RNA into plant-protoplasts mediated by reverse-phase evaporation vesicles (liposomes). Mol Gen Genet 184:161–165Google Scholar
  17. 17.
    Folling M, Pedersen C, Olesen A (1998) Reduction of nuclease activity from Lolium protoplasts: effect on transformation frequency. Plant Sci 139:29–40CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Patrícia Duarte
    • 1
    • 2
  • Diana Ribeiro
    • 1
    • 2
    • 3
    • 4
  • Inês Carqueijeiro
    • 1
    • 2
    • 4
  • Sara Bettencourt
    • 1
    • 2
  • Mariana Sottomayor
    • 1
    • 2
    • 4
    Email author
  1. 1.Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  2. 2.IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
  3. 3.Departamento de BiologiaUniversidade do MinhoBragaPortugal
  4. 4.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations