Analytical and Fluorimetric Methods for the Characterization of the Transmembrane Transport of Specialized Metabolites in Plants

  • Inês Carqueijeiro
  • Viviana Martins
  • Henrique Noronha
  • Hernâni Gerós
  • Mariana SottomayorEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1405)


The characterization of membrane transport of specialized metabolites is essential to understand their metabolic fluxes and to implement metabolic engineering strategies towards the production of increased levels of these valuable metabolites. Here, we describe a set of procedures to isolate tonoplast membranes, to check their purity and functionality, and to characterize their transport properties. Transport is assayed directly by HPLC analysis and quantification of the metabolites actively accumulated in the vesicles, and indirectly using the pH sensitive fluorescent probe ACMA (9-amino-6- chloro-2-methoxyacridine), when a proton antiport is involved.

Key words

ABC transporters ACMA Alkaloids BY-2 cells Catharanthus roseus H+-antiport MATE transporters Tobacco Tonoplast vesicles Transmembrane transport Transmembrane pH gradient Uptake assay 



This work was supported by: (1) Fundo Europeu de Desenvolvimento Regional funds through the Operational Competitiveness Programme COMPETE and by National Funds through Fundação para a Ciência e a Tecnologia (FCT) under the projects FCOMP-01-0124-FEDER-037277 (PEst-C/SAU/LA0002/2013) and FCOMP-01-0124-FEDER-019664 (PTDC/BIA-BCM/119718/2010); (2) by the FCT scholarships co-supported by FCT and POPH-QREN (European Social Fund), SFRH/BD/41907/2007 (IC) and SFRH/BD/74257/2010 (HN); (3) by a Postdoctoral fellowship financed by national funds through FCT under the project Incentivo/SAU/LA0002/2014 (VM); (4) by a Scientific Mecenate Grant from Grupo Jerónimo Martins.


  1. 1.
    Shoji T (2014) ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: a common theme among diverse detoxification mechanisms. Int Rev Cell Mol Biol 309:303–346CrossRefPubMedGoogle Scholar
  2. 2.
    Shitan N, Yazaki K (2013) New insights into the transport mechanisms in plant vacuoles. Int Rev Cell Mol Biol 305:383–433CrossRefPubMedGoogle Scholar
  3. 3.
    Conde A, Regalado A, Rodrigues D, Costa JM, Blumwald E, Chaves MM, Gerós H (2015) Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. J Exp Bot 66:889–906CrossRefPubMedGoogle Scholar
  4. 4.
    Carqueijeiro I, Noronha H, Duarte P, Gerós H, Sottomayor M (2013) Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton driven antiport. Plant Physiol 162:1486–1496PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Martins V, Hanana M, Blumwald E, Gerós H (2012) Copper transport and compartmentation in grape cells. Plant Cell Physiol 53:1866–1880CrossRefPubMedGoogle Scholar
  6. 6.
    Johansson F, Olbe M, Sommarin M, Larsson C (1995) Brij 58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J 7:165–173CrossRefPubMedGoogle Scholar
  7. 7.
    Conde A, Diallinas G, Chaumont F, Chaves M, Gerós H (2010) Transporters, channels or simple diffusion? Dogmas, atypical roles and complexity in transport systems. Int J Biochem Cell Biol 42:857–868CrossRefPubMedGoogle Scholar
  8. 8.
    Conde C, Agasse A, Glissant D, Tavares R, Gerós H, Delrot S (2006) Pathways of glucose regulation of monosaccharide transport in grape cells. Plant Physiol 141:1563–1577PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  10. 10.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  11. 11.
    Maeshima M, Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264:20068–20073PubMedGoogle Scholar
  12. 12.
    Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118CrossRefGoogle Scholar
  13. 13.
    Façanha AR, de Meis L (1998) Reversibility of H+-ATPase and H+-pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol 116:1487–1495CrossRefGoogle Scholar
  14. 14.
    Queirós F, Fontes N, Silva P, Almeida DPF, Maeshima M, Gerós H, Fidalgo F (2009) Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt. J Exp Bot 60:1363–1374CrossRefPubMedGoogle Scholar
  15. 15.
    Vera-Estrella R, Barkla BJ, Higgins VJ, Blumwald E (1994) Plant defense response to fungal pathogens: activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol 104:209–215PubMedCentralPubMedGoogle Scholar
  16. 16.
    Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin- accumulating cells of the seed coat. Plant Cell 19:2023–2038PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Sottomayor M, dePinto MC, Salema R, DiCosmo F, Pedreno MA, Barcelo AR (1996) The vacuolar localization of a basic peroxidase isoenzyme responsible for the synthesis of alpha-3',4'-anhydrovinblastine in Catharanthus roseus (L) G. Don leaves. Plant Cell Environ 19:761–767CrossRefGoogle Scholar
  18. 18.
    Casadio R (1991) Measurements of transmembrane pH differences of low extents in bacterial chromatophores. A study with the fluorescent probe 9-amino, 6-chloro, 2-methoxyacridine. Eur Biophys J 19:189–201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Inês Carqueijeiro
    • 1
    • 2
    • 3
  • Viviana Martins
    • 1
    • 2
    • 4
    • 5
  • Henrique Noronha
    • 4
    • 5
  • Hernâni Gerós
    • 4
    • 5
  • Mariana Sottomayor
    • 1
    • 2
    • 3
    Email author
  1. 1.Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  2. 2.IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
  3. 3.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  4. 4.Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB-UM)BragaPortugal
  5. 5.Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar, Departamento de BiologiaUniversidade do MinhoBragaPortugal

Personalised recommendations