Skip to main content

Formulation Studies During Preclinical Development of Influenza Hemagglutinin and Virus-Like Particle Vaccine Candidates

  • Protocol
  • First Online:
Book cover Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1404))

  • 4620 Accesses

Abstract

A critical element of vaccine formulation studies is the identification of chemical and physical degradation pathways that compromise structural integrity, and which may in turn affect the clinical safety and efficacy, of macromolecular antigens. Formulation development helps optimize and maintain the long-term storage stability and viability of vaccine antigens in pharmaceutically relevant dosage forms. The protocols presented in this manuscript highlight the use of accelerated stability studies for the formulation of influenza vaccine candidates including virus-like particles (VLP) and particle forming hemagglutinin (HA) antigens. Three case studies, each targeting a different facet of preclinical vaccine formulation development, are reviewed: (1) excipient screening experiments to mitigate VLP physical degradation, (2) methods for monitoring a specific chemical perturbation of the recombinant HA antigen and elucidating its effect on in vitro potency, and (3) maintaining HA conformational stability in the presence of freeze–thaw and freeze-drying stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson JE, Chiu W (2000) Structures of virus and virus-like particles. Curr Opin Struct Biol 10:229–235

    CAS  PubMed  Google Scholar 

  2. Caspar DT, Klug A (1962) Physical principles in the construction of regular viruses. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–24

    Google Scholar 

  3. Baschong W, Hasler L, Häner M, Kistler J, Aebi U (2003) Repetitive versus monomeric antigen presentation: direct visualization of antibody affinity and specificity. J Struct Biol 143:258–262

    CAS  PubMed  Google Scholar 

  4. Chackerian B (2007) Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines 6:381–390

    CAS  PubMed  Google Scholar 

  5. Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787–796

    CAS  PubMed  Google Scholar 

  6. McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR (1984) Human hepatitis B vaccine from recombinant yeast. Nature 307:178–180

    CAS  PubMed  Google Scholar 

  7. Jain NK, Sahni N, Kumru OS, Joshi SB, Volkin DB, Middaugh CR (2014) Formulation and stabilization of recombinant protein based virus-like particle vaccines. Adv Drug Delivery 19:42–55

    CAS  PubMed  Google Scholar 

  8. Roldão A, Mellado MCM, Castilho LR, Carrondo MJ, Alves PM (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9:1149–1176

    PubMed  Google Scholar 

  9. Lua LH, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg AP (2014) Bioengineering virus‐like particles as vaccines. Biotechnol Bioeng 111:425–440

    CAS  PubMed  Google Scholar 

  10. Ausar SF, Foubert TR, Hudson MH, Vedvick TS, Middaugh CR (2006) Conformational stability and disassembly of Norwalk virus-like particles effect of pH and temperature. J Biol Chem 281:19478–19488

    CAS  PubMed  Google Scholar 

  11. Mach H, Volkin DB, Troutman RD, Wang B, Luo Z, Jansen KU, Shi L (2006) Disassembly and reassembly of yeast‐derived recombinant human papillomavirus virus‐like particles (HPV VLPs). J Pharm Sci 95:2195–2206

    CAS  PubMed  Google Scholar 

  12. Cleland JL, Powell MF, Shire SJ (1992) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 10:307–377

    Google Scholar 

  13. Shire SJ (2009) Formulation and manufacturability of biologics. Curr Opin Biotechnol 20:708–714

    CAS  PubMed  Google Scholar 

  14. Hasija M, Li L, Rahman N, Ausar SF (2013) Forced degradation studies: an essential tool for the formulation development of vaccines. Vaccine 3:11–33

    CAS  Google Scholar 

  15. Bhatnagar BS, Bogner RH, Pikal MJ (2007) Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol 12:505–523

    CAS  PubMed  Google Scholar 

  16. Carpenter JF, Crowe JH (1988) The mechanism of cryoprotection of proteins by solutes. Cryobiology 25:244–255

    CAS  PubMed  Google Scholar 

  17. Myers JK, Nick Pace C, Martin Scholtz J (1995) Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci 4:2138–2148

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cromwell ME, Hilario E, Jacobson F (2006) Protein aggregation and bioprocessing. AAPS J 8:E572–E579

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Permyakov EA, Burstein EA (1984) Some aspects of studies of thermal transitions in proteins by means of their intrinsic fluorescence. Biophys Chem 19:265–271

    CAS  PubMed  Google Scholar 

  20. Telikepalli S, Kumru OS, Kim JH, Joshi SB, O’Berry KB, Blake-Haskins AW, Perkins MD, Middaugh CR, Volkin DB (2015) Characterization of the physical stability of a lyophilized IgG1 mAb after accelerated shipping-like stress. J Pharm Sci 104:495–507

    CAS  PubMed  Google Scholar 

  21. Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat Rev Drug Discov 4:298–306

    CAS  PubMed  Google Scholar 

  22. Kumru OS, Joshi SB, Smith DE, Middaugh CR, Prusik T, Volkin DB (2014) Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals 42:237–259

    CAS  PubMed  Google Scholar 

  23. Randolph TW (1997) Phase separation of excipients during lyophilization: effects on protein stability. J Pharm Sci 86:1198–1203

    CAS  PubMed  Google Scholar 

  24. Luthra S, Obert JP, Kalonia DS, Pikal MJ (2007) Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary‐drying stresses on lactate dehydrogenase using a humidity controlled mini freeze‐dryer. J Pharm Sci 96:61–70

    CAS  PubMed  Google Scholar 

  25. Chang BS, Hershenson S (2002) Practical approaches to protein formulation development. In: Rational design of stable protein formulations. Springer, New York, NY, pp 1–25

    Google Scholar 

  26. Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients, vol 6. Pharmaceutical Press, London

    Google Scholar 

  27. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB (2011) Protein–excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 63:1118–1159

    CAS  PubMed  Google Scholar 

  28. Pincoa RG, Sullivanb TM (2006) Regulation of pharmaceutical excipients. Excipient development for pharmaceutical, biotechnology, and drug delivery systems. CRC Press, Boca Raton, FL

    Google Scholar 

  29. Kossiakoff A (1988) Tertiary structure is a principal determinant to protein deamidation. Science 240:191–194

    CAS  PubMed  Google Scholar 

  30. Brazeau GA, Cooper B, Svetic KA, Smith CL, Gupta P (1998) Current perspectives on pain upon injection of drugs. J Pharm Sci 87:667–677

    CAS  PubMed  Google Scholar 

  31. Chowdhuri S, Chandra A (2001) Molecular dynamics simulations of aqueous NaCl and KCl solutions: effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules. J Chem Phys 115:3732–3741

    CAS  Google Scholar 

  32. Arakawa T, Timasheff S (1985) The stabilization of proteins by osmolytes. Biophys J 47:411

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Arakawa T, Tsumoto K, Kita Y, Chang B, Ejima D (2007) Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 33:587–605

    CAS  PubMed  Google Scholar 

  34. Arakawa T, Timasheff SN (1983) Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch Biochem Biophys 224:169–177

    CAS  PubMed  Google Scholar 

  35. Chen B, Bautista R, Yu K, Zapata GA, Mulkerrin MG, Chamow SM (2003) Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms. Pharm Res 20:1952–1960

    CAS  PubMed  Google Scholar 

  36. Falconer RJ, Chan C, Hughes K, Munro TP (2011) Stabilization of a monoclonal antibody during purification and formulation by addition of basic amino acid excipients. J Chem Technol Biotechnol 86:942–948

    CAS  Google Scholar 

  37. Kanazawa H, Fujimoto S, Ohara A (1994) Effect of radical scavengers on the inactivation of papain by ascorbic acid in the presence of cupric ions. Biol Pharm Bull 17:476–481

    CAS  PubMed  Google Scholar 

  38. Trivedi MV, Laurence JS, Siahaan TJ (2009) The role of thiols and disulfides in protein chemical and physical stability. Curr Protein Pept Sci 10:614

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Back JF, Oakenfull D, Smith MB (1979) Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry 18:5191–5196

    CAS  PubMed  Google Scholar 

  40. Arakawa T, Timasheff SN (1982) Stabilization of protein structure by sugars. Biochemistry 21:6536–6544

    CAS  PubMed  Google Scholar 

  41. Stadtman E (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821

    CAS  PubMed  Google Scholar 

  42. Li S, Schöneich C, Borchardt RT (1995) Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization. Biotech Bioeng 48:490–500

    CAS  Google Scholar 

  43. Shi L, Sanyal G, Ni A, Luo Z, Doshna S, Wang B, Graham TL, Wang N, Volkin DB (2005) Stabilization of human papillomavirus virus‐like particles by non‐ionic surfactants. J Pharm Sci 94:1538–1551

    CAS  PubMed  Google Scholar 

  44. Krägel J, O’Neill M, Makievski A, Michel M, Leser M, Miller R (2003) Dynamics of mixed protein–surfactant layers adsorbed at the water/air and water/oil interface. Colloids Surf B Biointerfaces 31:107–114

    Google Scholar 

  45. Kerwin BA (2008) Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci 97:2924–2935

    CAS  PubMed  Google Scholar 

  46. Dewez J-L, Berger V, Schneider Y-J, Rouxhet PG (1997) Influence of substrate hydrophobicity on the adsorption of collagen in the presence of pluronic F68, albumin, or calf serum. J Colloid Interface Sci 191:1–10

    CAS  PubMed  Google Scholar 

  47. Gross P, Ennis F, Gaerlan P, Denning C, Setia U, Davis W, Bisberg D (1981) Comparison of new triton X-100-and tween-ether-treated split-treated vaccines in children. J Clin Microbiol 14:534–538

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Heinig K, Vogt C (1997) Determination of Triton X-100 in influenza vaccine by high-performance liquid chromatography and capillary electrophoresis. Fresenius J Anal Chem 359:202–206

    CAS  Google Scholar 

  49. Oncley J, Ellenbogen E, Gitlin D, Gurd F (1952) Protein–protein interactions. J Phys Chem 56:85–92

    CAS  Google Scholar 

  50. Kissmann J, Joshi SB, Haynes JR, Dokken L, Richardson C, Middaugh CR (2011) H1N1 influenza virus‐like particles: physical degradation pathways and identification of stabilizers. J Pharm Sci 100:634–645

    CAS  PubMed  Google Scholar 

  51. Hickey JM, Holtz KM, Manikwar P, Joshi SB et al (2014) Mechanism of a decrease in potency for the recombinant influenza A virus hemagglutinin H3 antigen during storage. J Pharm Sci 103:821–827

    CAS  PubMed  Google Scholar 

  52. Feshchenko E, Rhodes DG, Felberbaum R, McPherson C, Rininger JA, Post P, Cox MM (2012) Pandemic influenza vaccine: characterization of A/California/07/2009 (H1N1) recombinant hemagglutinin protein and insights into H1N1 antigen stability. BMC Biotechnol 12:77

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Amorij J, Meulenaar J, Hinrichs W, Stegmann T, Huckriede A, Coenen F, Frijlink H (2007) Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine 25:6447–6457

    CAS  PubMed  Google Scholar 

  54. Goldburg W (1999) Dynamic light scattering. Am J Phys 67:1152–1160

    Google Scholar 

  55. Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation, Mineola, NY

    Google Scholar 

  56. Pecora R (1985) Dynamic light scattering: applications of photon correlation spectroscopy. Springer Science & Business Media, New York, NY

    Google Scholar 

  57. Edward JT (1970) Molecular volumes and the Stokes-Einstein equation. J Chem Educ 47:261

    CAS  Google Scholar 

  58. Shiba K, Niidome T, Katoh E, Xiang H, Han L, Mori T, Katayama Y (2010) Polydispersity as a parameter for indicating the thermal stability of proteins by dynamic light scattering. Anal Sci 26:659–663

    CAS  PubMed  Google Scholar 

  59. Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York, NY

    Google Scholar 

  60. Greenfield NJ, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116

    CAS  PubMed  Google Scholar 

  61. Provencher SW, Gloeckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37

    CAS  PubMed  Google Scholar 

  62. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    CAS  PubMed  Google Scholar 

  63. Lakowicz JR (2007) Principles of fluorescence spectroscopy. Springer Science & Business Media, New York, NY

    Google Scholar 

  64. Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rodrigues JV, Prosinecki V, Marrucho I, Rebelo LPN, Gomes CM (2011) Protein stability in an ionic liquid milieu: on the use of differential scanning fluorimetry. Phys Chem Chem Phys 13:13614–13616

    CAS  PubMed  Google Scholar 

  66. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    CAS  PubMed  Google Scholar 

  67. Parasassi T, De Stasio G, Ravagnan G, Rusch R, Gratton E (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60:179

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chapman D (1975) Phase transitions and fluidity characteristics of lipids and cell membranes. Q Rev Biophys 8:185–235

    CAS  PubMed  Google Scholar 

  69. Golub GH, Reinsch C (1970) Singular value decomposition and least squares solutions. Numer Math 14:403–420

    Google Scholar 

  70. Maddux NR, Joshi SB, Volkin DB, Ralston JP, Middaugh CR (2011) Multidimensional methods for the formulation of biopharmaceuticals and vaccines. J Pharm Sci 100:4171–4197

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cox MM, Hollister JR (2009) FluBlok, a next generation influenza vaccine manufactured in insect cells. Biologicals 37:182–189

    CAS  PubMed  Google Scholar 

  72. Treanor JJ, El Sahly H, King J, Graham I, Izikson R, Kohberger R, Patriarca P, Cox M (2011) Protective efficacy of a trivalent recombinant hemagglutinin protein vaccine (FluBlok®) against influenza in healthy adults: a randomized, placebo-controlled trial. Vaccine 29:7733–7739

    CAS  PubMed  Google Scholar 

  73. Wood J, Schild G, Newman R, Seagroatt V (1977) An improved single-radial-immunodiffusion technique for the assay of influenza haemagglutinin antigen: application for potency determinations of inactivated whole virus and subunit vaccines. J Biol Stand 5:237–247

    CAS  PubMed  Google Scholar 

  74. Wood J, Dunleavy U, Newman R, Riley A, Robertson J, Minor P (1998) The influence of the host cell on standardisation of influenza vaccine potency. Dev Biol Stand 98:183–188, discussion 197

    Google Scholar 

  75. Williams M, Mayner R, Daniel N, Phelan M, Rastogi S, Bozeman F, Ennis F (1980) New developments in the measurement of the hemagglutinin content of influenza virus vaccines by single-radial-immunodiffusion. J Biol Stand 8:289–296

    CAS  PubMed  Google Scholar 

  76. Berne BH (1974) Differing methodology and equations used in quantitating immunoglobulins by radial immunodiffusion—a comparative evaluation of reported and commercial techniques. Clin Chem 20:61–69

    CAS  PubMed  Google Scholar 

  77. Mancini G, Carbonara A, Heremans J (1965) Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2:235–IN236

    CAS  PubMed  Google Scholar 

  78. Shapiro AL, Viñuela E, Maizel JV (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 28:815–820

    CAS  PubMed  Google Scholar 

  79. Schägger H, Von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    PubMed  Google Scholar 

  80. Reed D, Babson J, Beatty P, Brodie A, Ellis W, Potter D (1980) High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal Biochem 106:55–62

    CAS  PubMed  Google Scholar 

  81. Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208

    CAS  PubMed  Google Scholar 

  82. Skehel J, Bayley P, Brown E, Martin S, Waterfield M, White J, Wilson I, Wiley D (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci 79:968–972

    CAS  PubMed  Google Scholar 

  83. Carpenter JF, Pikal MJ, Chang BS, Randolph TW (1997) Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res 14:969–975

    CAS  PubMed  Google Scholar 

  84. Privalov PL (1990) Cold denaturation of protein. Crit Rev Biochem Mol Biol 25:281–306

    CAS  PubMed  Google Scholar 

  85. Singh SK, Kolhe P, Wang W, Nema S (2009) Large-scale freezing of biologics. BioProcess Int 7:34–42

    CAS  Google Scholar 

  86. Cao E, Chen Y, Cui Z, Foster PR (2003) Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions. Biotechnol Bioeng 82:684–690

    CAS  PubMed  Google Scholar 

  87. Chang BS, Kendrick BS, Carpenter JF (1996) Surface‐induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci 85:1325–1330

    CAS  PubMed  Google Scholar 

  88. Larsen S (1973) Studies on stability of drugs in frozen systems. VI. The effect of freezing upon pH for buffered aqueous solutions. Arch Pharm Chem Sci Ed 1:41–53

    CAS  Google Scholar 

  89. Costantino HR, Pikal MJ (2004) Lyophilization of biopharmaceuticals, vol 2. Springer Science & Business Media, New York, NY

    Google Scholar 

  90. Rexroad J, Wiethoff CM, Jones LS, Middaugh CR (2002) Lyophilization and the thermostability of vaccines. Cell Preserv Technol 1:91–104

    CAS  Google Scholar 

  91. Matejtschuk P (2007) Lyophilization of proteins. In: Cryopreservation and freeze-drying protocols. Springer, New York, NY, pp 59–72

    Google Scholar 

  92. Lang R, Winter G, Vogt L, Zürcher A, Dorigo B, Schimmele B (2009) Rational design of a stable, freeze-dried virus-like particle-based vaccine formulation. Drug Dev Ind Pharma 35:83–97

    CAS  Google Scholar 

  93. Ruiz RP (2001) Karl Fischer titration. Current protocols in food analytical chemistry A:A1:A1.2

    Google Scholar 

  94. Searles JA, Carpenter JF, Randolph TW (2001) Annealing to optimize the primary drying rate, reduce freezing‐induced drying rate heterogeneity, and determine Tg′ in pharmaceutical lyophilization. J Pharm Sci 90:872–887

    CAS  PubMed  Google Scholar 

  95. Rey LR (1960) Thermal analysis of eutectics in freezing solutions. Ann N Y Acad Sci 85:510–534

    CAS  PubMed  Google Scholar 

  96. Patel RM, Hurwitz A (1972) Eutectic temperature determination of preformulation systems and evaluation by controlled freeze drying. J Pharm Sci 61:1806–1810

    CAS  PubMed  Google Scholar 

  97. Lewis LM, Johnson RE, Oldroyd ME, Ahmed SS, Joseph L, Saracovan I, Sinha S (2010) Characterizing the freeze–drying behavior of model protein formulations. AAPS PharmSciTech 11:1580–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gill P, Sauerbrunn S, Reading M (1993) Modulated differential scanning calorimetry. J Therm Anal Calorim 40:931–939

    CAS  Google Scholar 

  99. Patel SM, Doen T, Pikal MJ (2010) Determination of end point of primary drying in freeze-drying process control. AAPS Pharm Sci Tech 11:73–84

    CAS  Google Scholar 

  100. Bhambhani A, Medi BM (2010) LYOPHILIZATION: selection of containers/closures for use in lyophilization applications: possibilities and limitations. Am Pharm Rev 13:86

    Google Scholar 

  101. Pikal M, Roy M, Shah S (1984) Mass and heat transfer in vial freeze‐drying of pharmaceuticals: role of the vial. J Pharm Sci 73:1224–1237

    CAS  PubMed  Google Scholar 

  102. Burns GW, Scroger MG (1989) The calibration of thermocouples and thermocouple materials, vol 250—35. National Institute of Standards and Technology, US Department of Commerce, Gaithersburg, MD

    Google Scholar 

  103. Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203:1–60

    CAS  PubMed  Google Scholar 

  104. Patapoff TW, Overcashier DE (2002) The importance of freezing on lyophilization cycle development. BioPharm 15:16–21

    Google Scholar 

  105. Carr CM, Chaudhry C, Kim PS (1997) Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci U S A 94:14306–14313

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Singh SK, Toler MR (2012) Monitoring of subvisible particles in therapeutic proteins. In: Therapeutic proteins. Springer, New York, NY, pp 379–401

    Google Scholar 

  107. Pelton JT, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277:167–176

    CAS  PubMed  Google Scholar 

  108. Cordes MH, Sauer RT (1999) Tolerance of a protein to multiple polar-to-hydrophobic surface substitutions. Protein Sci 8:318–325

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Parasassi T, De Stasio G, d’Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57:1179

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Clausi AL, Merkley SA, Carpenter JF, Randolph TW (2008) Inhibition of aggregation of aluminum hydroxide adjuvant during freezing and drying. J Pharm Sci 97:2049–2061

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Newton Wahome .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wahome, N., Hickey, J.M., Volkin, D.B., Middaugh, C.R. (2016). Formulation Studies During Preclinical Development of Influenza Hemagglutinin and Virus-Like Particle Vaccine Candidates. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1404. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-3389-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3389-1_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-3388-4

  • Online ISBN: 978-1-4939-3389-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics