Skip to main content

Alphavirus-Based Vaccines

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1404))

Abstract

Alphavirus vectors based on Semliki Forest virus, Sindbis virus, and Venezuelan equine encephalitis virus have been widely applied for vaccine development. Naked RNA replicons, recombinant viral particles, and layered DNA vectors have been subjected to immunization in preclinical animal models with antigens for viral targets and tumor antigens. Moreover, a limited number of clinical trials have been conducted in humans. Vaccination with alphavirus vectors has demonstrated efficient immune responses and has showed protection against challenges with lethal doses of virus and tumor cells, respectively. Moreover, vaccines have been developed against alphaviruses causing epidemics such as Chikungunya virus.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Delrue I, Verzele D, Madder A, Nauwynck HJ (2012) Inactivated virus vaccines: from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines 11:695–719

    Article  CAS  Google Scholar 

  2. Deng MP, Hu ZH, Wang HL, Deng F (2012) Developments of subunit and VLP vaccines against influenza A virus. Virol Sin 27:145–153

    Article  CAS  Google Scholar 

  3. Liljestrom P, Garoff H (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y) 9:1356–1361

    Article  CAS  Google Scholar 

  4. Xiong C, Levis R, Shen P, Schlesinger S, Rice CM, Huang HV (1989) Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243:1188–1191

    Article  CAS  Google Scholar 

  5. Davies NL, Brown KW, Johnston RE (1989) In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology 171:189–204

    Article  Google Scholar 

  6. Lundstrom K (2003) Alphavirus vectors for vaccine production and gene therapy. Expert Rev Vaccines 2:447–459

    Article  CAS  Google Scholar 

  7. Lundstrom K (2014) Alphavirus-based vaccines. Viruses 6:2392–2415

    Article  CAS  Google Scholar 

  8. Brand D, Lemiale F, Turbica I, Buzelay L, Brunet S, Barin F (2000) Comparative analysis of humoral immune responses to HIV type 1 envelope glycoproteins in mice immunized with a DNA vaccine, recombinant Semliki Forest virus RNA, or recombinant Semliki Forest virus particles. AIDS Res Hum Retroviruses 14:1369–1377

    Article  Google Scholar 

  9. Kirman JR, Turon T, Su H, Li A, Kraus C, Polo JM et al (2003) Enhanced immunogenicity to Mycobacterium tuberculosis by vaccination with an alphavirus plasmid replicon expressing antigen 85A. Infect Immun 71:575–579

    Article  CAS  Google Scholar 

  10. Giraud A, Ataman-Onal Y, Battail N, Piga N, Brand D, Mandrand B et al (1999) Generation of monoclonal antibodies to native human immunodeficiency virus type 1 envelope glycoprotein by immunization of mice with naked RNA. J Virol Methods 79:75–84

    Article  CAS  Google Scholar 

  11. Caley IJ, Betts MR, Irlbeck DM, Davis NL, Swanstrom R, Frelinger JA et al (1997) Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol 71:3031–3038

    Article  CAS  Google Scholar 

  12. Pushko P, Bray M, Ludwig GV, Parker M, Schmaljohn A, Sanchez A et al (2000) Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus. Vaccine 19:142–153

    Article  CAS  Google Scholar 

  13. Yang SG, Wo JE, Li MW, Mi FF, Yu CB, Lv GL et al (2009) Construction and cellular immune response induction of HA-based alphavirus replicon vaccines against human-avian influenza (H5N1). Vaccine 27:7451–7458

    Article  CAS  Google Scholar 

  14. Herbert AS, Kuehne AI, Barth JF, Ortiz RA, Nichols DK, Zak SE et al (2013) Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with Ebolavirus. J Virol 87:4952–4964

    Article  CAS  Google Scholar 

  15. Moran TP, Burgents JE, Long B, Ferrer I, Jaffee EM, Tisch RM et al (2007) Alphaviral vector-transduced dendritic cells are successful therapeutic vaccines against neu-overexpressing tumors in wild-type mice. Vaccine 25:6604–6612

    Article  CAS  Google Scholar 

  16. Lachman LB, Rao XM, Kremer RH, Ozpolat B, Kiriakova G, Price JE (2001) DNA vaccination against neu reduces breast cancer incidence and metastasis in mice. Cancer Gene Ther 8:259–268

    Article  CAS  Google Scholar 

  17. Ying H, Zaks TZ, Wang RF, Irvine KR, Kammula US, Marincola FM et al (1999) Cancer therapy using a self-replicating RNA vaccine. Nat Med 5:823–827

    Article  CAS  Google Scholar 

  18. Hart MK, Caswell-Stephan K, Bakken R, Tammariello R, Pratt W, Davis N et al (2000) Improved mucosal protection against Venezuelan equine encephalitis virus is induced by the molecularly defined, live-attenuated V3526 vaccine candidate. Vaccine 18:3067–3075

    Article  CAS  Google Scholar 

  19. Mallilankaraman K, Shedlock DJ, Bao H, Kawalekar OU et al (2011) A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl Trop Dis 5, e928

    Article  CAS  Google Scholar 

  20. Edelman R, Tacket CO, Wasserman SS, Bodison SA, Perry JG, Mangiafico JA (2000) Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am J Trop Med Hyg 62:681–685

    Article  CAS  Google Scholar 

  21. Bernstein DI, Reap EA, Katen K, Watson A, Smith K, Norberg P et al (2009) Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 28:484–493

    Article  CAS  Google Scholar 

  22. Morse MA, Hobeika AC, Osada T, Berglund P, Hubby B, Negri S et al (2010) An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer. J Clin Invest 120:3234–3241

    Article  CAS  Google Scholar 

  23. Slovin SF, Kehoe M, Durso R, Fernandez C, Olson W, Gao JP et al (2013) A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer. Vaccine 31:943–949

    Article  CAS  Google Scholar 

  24. Sjöberg EM, Suomalainen M, Garoff H (1994) A significantly improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene. Biotechnology 12:1127–1131

    Article  Google Scholar 

  25. Lundstrom K, Abenavoli A, Malgaroli A, Ehrengruber MU (2003) Novel Semliki Forest virus vectors with reduced toxicity and temperature-sensitivity for long-term enhancement of transgene expression. Mol Ther 7:202–209

    Article  CAS  Google Scholar 

  26. Berglund P, Sjöberg M, Garoff H, Atkins GJ, Sheahan BJ, Liljestrom P (1993) Semliki forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology 11:916–920

    CAS  PubMed  Google Scholar 

  27. Irvine KR, Rao JB, Rosenberg SA, Restifo NP (1996) Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J Immunol 156:238–245

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Avogadri F, Merghoub T, Maughan MF, Hirschhorn-Cymerman D et al (2010) Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity. PLoS One 5, e12670

    Article  Google Scholar 

  29. Reitner WW, Hwang NL, de Veer MJ, Zhou A, Silverman RH, Williams BRG et al (2003) Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 5:33–39

    Article  Google Scholar 

  30. Colombage G, Hall R, Pavy M, Lobigs M (1998) DNA-based and alphavirus-vectored immunization with PrM and E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valley encephalitis virus. Virology 250:151–163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Lundstrom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lundstrom, K. (2016). Alphavirus-Based Vaccines. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1404. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-3389-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3389-1_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-3388-4

  • Online ISBN: 978-1-4939-3389-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics