Skip to main content

Application of Droplet Digital PCR to Validate Rift Valley Fever Vaccines

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1403))

Abstract

Droplet Digital™ polymerase chain reaction (ddPCR™) is a promising technique that quantitates the absolute concentration of nucleic acids in a given sample. This technique utilizes water-in-oil emulsion technology, a system developed by Bio-Rad Laboratories that partitions a single sample into thousands of nanoliter-sized droplets and counts nucleic acid molecules encapsulated in each individual particle as one PCR reaction. This chapter discusses the applications and methodologies of ddPCR for development of Rift Valley fever (RVF) vaccine, using an example that measures RNA copy numbers of a live-attenuated MP-12 vaccine from virus stocks, infected cells, or animal blood. We also discuss how ddPCR detects a reversion mutant of MP-12 from virus stocks accurately. The use of ddPCR improves the quality control of live-attenuated vaccines in the seed lot systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caplen H, Peters CJ, Bishop DH (1985) Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J Gen Virol 66:2271–2277

    Article  PubMed  Google Scholar 

  2. Meegan JM (1979) The Rift Valley fever epizootic in Egypt 1977-78. 1. Description of the epizootic and virological studies. Trans R Soc Trop Med Hyg 73:618–623

    Article  CAS  PubMed  Google Scholar 

  3. Lokugamage N, Freiberg AN, Morrill JC, Ikegami T (2012) Genetic subpopulations of Rift Valley fever ZH548, MP-12 and recombinant MP-12 strains. J Virol 86:13566–13575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morrill JC, Carpenter L, Taylor D, Ramsburg HH, Quance J et al (1991) Further evaluation of a mutagen-attenuated Rift Valley fever vaccine in sheep. Vaccine 9:35–41

    Article  CAS  PubMed  Google Scholar 

  5. Morrill JC, Jennings GB, Caplen H, Turell MJ, Johnson AJ et al (1987) Pathogenicity and immunogenicity of a mutagen-attenuated Rift Valley fever virus immunogen in pregnant ewes. Am J Vet Res 48:1042–1047

    CAS  PubMed  Google Scholar 

  6. Morrill JC, Mebus CA, Peters CJ (1997) Safety of a mutagen-attenuated Rift Valley fever virus vaccine in fetal and neonatal bovids. Am J Vet Res 58:1110–1114

    CAS  PubMed  Google Scholar 

  7. Morrill JC, Mebus CA, Peters CJ (1997) Safety and efficacy of a mutagen-attenuated Rift Valley fever virus vaccine in cattle. Am J Vet Res 58:1104–1109

    CAS  PubMed  Google Scholar 

  8. Morrill JC, Peters CJ (2003) Pathogenicity and neurovirulence of a mutagen-attenuated Rift Valley fever vaccine in rhesus monkeys. Vaccine 21:2994–3002

    Article  CAS  PubMed  Google Scholar 

  9. Morrill JC, Peters CJ (2011) Mucosal immunization of rhesus macaques with Rift Valley Fever MP-12 vaccine. J Infect Dis 204:617–625

    Article  CAS  PubMed  Google Scholar 

  10. Morrill JC, Peters CJ (2011) Protection of MP-12-vaccinated rhesus macaques against parenteral and aerosol challenge with virulent Rift Valley fever virus. J Infect Dis 204:229–236

    Article  CAS  PubMed  Google Scholar 

  11. Bizouarn F (2014) Introduction to digital PCR. Methods Mol Biol 1160:27–41

    Article  CAS  PubMed  Google Scholar 

  12. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ et al (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011

    Article  CAS  PubMed  Google Scholar 

  13. Aranda R, Dineen SM, Craig RL, Guerrieri RA, Robertson JM (2009) Comparison and evaluation of RNA quantification methods using viral, prokaryotic, and eukaryotic RNA over a 10(4) concentration range. Anal Biochem 387:122–127

    Article  CAS  PubMed  Google Scholar 

  14. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4:357–362

    Article  CAS  PubMed  Google Scholar 

  15. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  16. Gauliard N, Billecocq A, Flick R, Bouloy M (2006) Rift Valley fever virus noncoding regions of L, M and S segments regulate RNA synthesis. Virology 351:170–179

    Article  CAS  PubMed  Google Scholar 

  17. So A, Heredia N, Troupe C (2012) Detection of rare mutant alleles within a background of wild-type sequences using the QX100 droplet digital PCR system. Bio-Rad Bulletin 6260

    Google Scholar 

  18. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC et al (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Indran SV, Lihoradova OA, Phoenix I, Lokugamage N, Kalveram B et al (2013) Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice. J Gen Virol 94:1441–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Raymond Miller (Bio-Rad) for initial setup of ddPCR experiment. This study was supported by NIH grant R01 AI087643, and the funding from the Sealy Center for Vaccine Development at The University of Texas Medical Branch at Galveston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuro Ikegami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ly, H.J., Lokugamage, N., Ikegami, T. (2016). Application of Droplet Digital PCR to Validate Rift Valley Fever Vaccines. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1403. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3387-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3387-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3385-3

  • Online ISBN: 978-1-4939-3387-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics