Skip to main content

Assessment of In Vivo siRNA Delivery in Cancer Mouse Models

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1402))

Abstract

RNA interference (RNAi) has rapidly become a powerful tool for target discovery and therapeutics. Small interfering RNAs (siRNAs) are highly effective in mediating sequence-specific gene silencing. However, the major obstacle for using siRNAs as cancer therapeutics is their systemic delivery from the administration site to target cells in vivo. This chapter describes approaches to deliver siRNA effectively for cancer treatment and discusses in detail the current methods to assess pharmacokinetics and biodistribution of siRNAs in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gondo Y (2008) Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet 9:803–810

    Article  CAS  PubMed  Google Scholar 

  2. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67

    Article  CAS  PubMed  Google Scholar 

  3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  4. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  5. Hatakeyama H, Akita H, Harashima H (2011) A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 63:152–160

    Article  CAS  PubMed  Google Scholar 

  6. Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977

    Article  CAS  PubMed  Google Scholar 

  7. Wu SY, Lopez-Berestein G, Calin GA, Sood AK (2014) RNAi therapies: drugging the undruggable. Sci Transl Med 6:240ps7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  9. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  CAS  PubMed  Google Scholar 

  10. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M et al (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823

    Article  CAS  PubMed  Google Scholar 

  11. Kim HS, Han HD, Armaiz-Pena GN, Stone RL, Nam EJ, Lee JW et al (2011) Functional roles of Src and Fgr in ovarian carcinoma. Clin Cancer Res 17:1713–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gharpure KM, Chu KS, Bowerman CJ, Miyake T, Pradeep S, Mangala SL et al (2014) Metronomic docetaxel in PRINT nanoparticles and EZH2 silencing have synergistic antitumor effect in ovarian cancer. Mol Cancer Ther 13:1750–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu SY, Yang X, Gharpure KM, Hatakeyama H, Egli M, McGuire MH et al (2014) 2′-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity. Nat Commun 5:3459

    PubMed  PubMed Central  Google Scholar 

  14. Han HD, Song CK, Park YS, Noh KH, Kim JH, Hwang T et al (2008) A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 350:27–34

    Article  CAS  PubMed  Google Scholar 

  15. Zhang HM, Chen SR, Cai YQ, Richardson TE, Driver LC, Lopez-Berestein G et al (2009) Signaling mechanisms mediating muscarinic enhancement of GABAergic synaptic transmission in the spinal cord. Neuroscience 158:1577–1588

    Article  CAS  PubMed  Google Scholar 

  16. Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225

    Article  CAS  PubMed  Google Scholar 

  17. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cheng A, Li M, Liang Y, Wang Y, Wong L, Chen C et al (2009) Stem-loop RT-PCR quantification of siRNAs in vitro and in vivo. Oligonucleotides 19:203–208

    Article  PubMed  Google Scholar 

  19. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H.H. is supported by JSPS Postdoctoral Fellowships for Research Abroad. S.Y.W. is supported by Ovarian Cancer Research Fund, Inc., Foundation for Women’s Cancer, and Cancer Prevention Research Institute of Texas training grants (RP101502 and RP101489). Portions of this work were supported by NIH grants (P50CA083639, CA109298, P50CA098258, U54CA151668, UH2TR000943, CA016672, U54CA96300, and U54CA96297), CPRIT (RP110595 and RP120214), an Ovarian Cancer Research Fund Program Project Development Grant, the Betty Ann Asche Murray Distinguished Professorship, the RGK Foundation, the Gilder Foundation, the Judi A. Rees Ovarian Cancer Research Fund, the Chapman Foundation, and the Meyer and Ida Gordon Foundation. This research was also supported, in part, by the Blanton-Davis Ovarian Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hatakeyama, H., Wu, S.Y., Mangala, L.S., Lopez-Berestein, G., Sood, A.K. (2016). Assessment of In Vivo siRNA Delivery in Cancer Mouse Models. In: Feng, Y., Zhang, L. (eds) Long Non-Coding RNAs. Methods in Molecular Biology, vol 1402. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3378-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3378-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3376-1

  • Online ISBN: 978-1-4939-3378-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics