Skip to main content

Affinity Purification Method for the Identification of Nonribosomal Peptide Biosynthetic Enzymes Using a Synthetic Probe for Adenylation Domains

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1401))

Abstract

A series of inhibitors have been designed based on 5′-O-sulfamoyl adenosine (AMS) that display tight binding characteristics towards the inhibition of adenylation (A) domains in nonribosomal peptide synthetases (NRPSs). We recently developed an affinity probe for A domains that could be used to facilitate the specific isolation and identification of NRPS modules. Our synthetic probe, which is a biotinylated variant of l-Phe-AMS (l-Phe-AMS-biotin), selectively targets the A domains in NRPS modules that recognize and convert l-Phe to an aminoacyl adenylate in whole proteomes. In this chapter, we describe the design and synthesis of l-Phe-AMS-biotin and provide a summary of our work towards the development of a series of protocols for the specific enrichment of NRPS modules using this probe.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    Article  CAS  PubMed  Google Scholar 

  2. Hur GH, Vickery CR, Burkart MD (2012) Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 10:1074–1098

    Article  Google Scholar 

  3. Conti E, Stachelhause T, Marahiel MA et al (1997) Structure basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    Article  CAS  PubMed  Google Scholar 

  5. Mootz HD, Marahiel MA (1999) The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol 179:6843–6850

    Google Scholar 

  6. Boettger D, Hertweck C (2013) Molecular diversity sculpted by fungal PKS-NRPS hybrids. ChemBioChem 14:28–42

    Article  CAS  PubMed  Google Scholar 

  7. Bumpus SB, Evans BS, Thomas PM et al (2009) A proteomics approach to discovering natural products and their biosynthetic pathways. Nat Biotechnol 10:951–956

    Article  Google Scholar 

  8. Meier JL, Niessen S, Hoover HS et al (2009) An orthogonal active site identification system (OASIS) for proteomic profiling of natural product biosynthesis. ACS Chem Biol 4:948–957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ishikawa F, Kakeya H (2014) Specific enrichment of nonribosomal peptide synthetase module by an affinity probe for adenylation domains. Bioorg Med Chem Lett 24:865–869

    Article  CAS  PubMed  Google Scholar 

  10. Kleinkauf H, Gevers W, Lipmann F (1969) Interrelation between activation and polymerization in gramicidin S biosynthesis. Proc Natl Acad Sci U S A 62:226–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lee SG, Lipmann F (1977) Isolation of amino acid activating subunit-pantetheine protein complexes: their role in chain elongation in tyrocidine synthesis. Proc Natl Acad Sci U S A 74:2343–2347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Finking R, Neumüller A, Solsbacher J et al (2003) Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. ChemBioChem 4:903–906

    Article  CAS  PubMed  Google Scholar 

  13. Qiao C, Gupte A, Boshoff HI et al (2007) 5′-O-[(N-Acyl)sulfamoyl]adenosines as antitubercular agents that inhibit MbtA: an adenylation enzymes required for siderophore biosynthesis of the mycobactins. J Med Chem 50:6080–6094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ishikawa F, Haushalter RW, Burkart MD (2012) Dehydratase-specific probes for fatty acid and polyketide synthases. J Am Chem Soc 134:769–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Meier JL, Mercer AC, Burkart MD (2008) Fluorescent profiling of modular biosynthetic enzymes by complementary metabolic and activity based probes. J Am Chem Soc 130:5443–5445

    Article  CAS  PubMed  Google Scholar 

  16. Andrew HD, Rohde RD, Millward SW et al (2009) Iterative in situ click chemistry creates antibody-like protein-capture agents. Angew Chem Int Ed 48:4944–4948

    Article  Google Scholar 

  17. Brodsky BH, Bois JD (2005) Oxaziridine-mediated catalytic hydroxylation of unactivated 3o C-H bonds using hydrogen peroxide. J Am Chem Soc 127:15391–15393

    Article  CAS  PubMed  Google Scholar 

  18. Matteo CC, Glade M, Tanaka A et al (1975) Microbiological studies on the formation of gramicidin S synthetases. Biotechnol Bioeng 17:129–142

    Article  CAS  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  20. Shevchenko A, Wilm M, Vorm O et al (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  21. Gharahdaghi F, Weinberg CR, Meagher DA et al (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605

    Article  CAS  PubMed  Google Scholar 

  22. Augenstein DC, Thrasher KD, Sinskey AJ et al (1974) Optimization in the recovery of a labile intracellular enzyme. Biotechnol Bioeng 16: 1433–1447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a Grant-in Aid for Young Scientists (B) 26750370 (F.I.) and research grants from the Japan Society of the Promotion of Science and the Ministry of Education, Culture, Sports, Science and Technology, Japan (H.K.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ishikawa, F., Kakeya, H. (2016). Affinity Purification Method for the Identification of Nonribosomal Peptide Biosynthetic Enzymes Using a Synthetic Probe for Adenylation Domains. In: Evans, B. (eds) Nonribosomal Peptide and Polyketide Biosynthesis. Methods in Molecular Biology, vol 1401. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3375-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3375-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3373-0

  • Online ISBN: 978-1-4939-3375-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics