Analysis of Ancient DNA in Microbial Ecology

  • Olivier Gorgé
  • E. Andrew Bennett
  • Diyendo Massilani
  • Julien Daligault
  • Melanie Pruvost
  • Eva-Maria Geigl
  • Thierry Grange
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1399)

Abstract

The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia. These spectacular results have been attained despite the degradation of DNA after the death of the host, which results in very short DNA molecules that become increasingly damaged, only low quantities of which remain. The low quantity of ancient DNA molecules renders their analysis difficult and prone to contamination with modern DNA molecules, in particular via contamination from the reagents used in DNA purification and downstream analysis steps. Finally, the rare ancient molecules are diluted in environmental DNA originating from the soil microorganisms that colonize bones and teeth. Thus, ancient skeletal remains can share DNA profiles with environmental samples and identifying ancient microbial genomes among the more recent, presently poorly characterized, environmental microbiome is particularly challenging. Here, we describe the methods developed and/or in use in our laboratory to produce reliable and reproducible paleogenomic results from ancient skeletal remains that can be used to identify the presence of ancient microbiota.

Key words

Ancient DNA NGS Double-stranded library Single-stranded library IonTorrent Illumina Contamination 

References

  1. 1.
    Pruvost M, Schwarz R, Correia VB, Champlot S, Braguier S, Morel N et al (2007) Freshly excavated fossil bones are best for amplification of ancient DNA. Proc Natl Acad Sci U S A 104:739–744Google Scholar
  2. 2.
    Fortea J, de la Rasilla M, Garcia-Tabernero A, Gigli E, Rosas A, Lalueza-Fox C (2008) Excavation protocol of bone remains for Neandertal DNA analysis in El Sidron Cave (Asturias, Spain). J Hum Evol 55:353–357Google Scholar
  3. 3.
    Sawyer S, Krause J, Guschanski K, Savolainen V, Paabo S (2012) Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One 7:e34131PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J, Prufer K et al (2007) Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci U S A 104:14616–14621PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Smith CI, Chamberlain AT, Riley MS, Cooper A, Stringer CB, Collins MJ (2001) Neanderthal DNA. Not just old but old and cold? Nature 410:771–772PubMedCrossRefGoogle Scholar
  6. 6.
    Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, Rabeder G et al (2005) Genomic sequencing of Pleistocene cave bears. Science 309:597–599PubMedCrossRefGoogle Scholar
  7. 7.
    Geigl EM (2002) On the circumstances surrounding the preservation and analysis of very old DNA. Archaeometry 44:337–342CrossRefGoogle Scholar
  8. 8.
    Geigl EM (2005) Why ancient DNA research needs taphonomy. In: O’Connor T (ed) Biosphere to lithosphere, new studies in vertebrate taphonomy. Oxbow Books, Oxford, pp 79–86Google Scholar
  9. 9.
    Salamon M, Tuross N, Arensburg B, Weiner S (2005) Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U S A 102:13783–13788PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S et al (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M et al (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74–78PubMedCrossRefGoogle Scholar
  12. 12.
    Prufer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S et al (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43–49PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY et al (2010) Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468:1053–1060PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I et al (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–497PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK et al (2011) A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:506–510PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Schuenemann VJ, Singh P, Mendum TA, Krause-Kyora B, Jager G, Bos KI et al (2013) Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341:179–183PubMedCrossRefGoogle Scholar
  17. 17.
    Warinner C, Rodrigues JF, Vyas R, Trachsel C, Shved N, Grossmann J et al (2014) Pathogens and host immunity in the ancient human oral cavity. Nat Genet 46:336–344PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Champlot S, Berthelot C, Pruvost M, Bennett EA, Grange T, Geigl EM (2010) An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS One 5:e13042PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bennett EA, Massilani D, Lizzo G, Daligault J, Geigl EM, Grange T (2014) Library construction for ancient genomics, single strand or double strand? Biotechniques 56:289–290, 292–286, 298, passimPubMedGoogle Scholar
  20. 20.
    Renaud G, Stenzel U, Kelso J (2015) leeHom, adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res 42(18):e141CrossRefGoogle Scholar
  21. 21.
    Jonsson H, Ginolhac A, Schubert M, Johnson PL, Orlando L (2013) mapDamage2.0, fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29:1682–1684PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lutfalla G, Uze G (2006) Performing quantitative reverse-transcribed polymerase chain reaction experiments. Methods Enzymol 410:386–400PubMedCrossRefGoogle Scholar
  24. 24.
    Pruvost M, Geigl E-M (2004) Real-time quantitative PCR to assess the authenticity of ancient DNA amplification. J Archaeol Sci 31:1191–1197CrossRefGoogle Scholar
  25. 25.
    Gansauge MT, Meyer M (2013) Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc 8:737–748PubMedCrossRefGoogle Scholar
  26. 26.
    Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P et al (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Clarridge JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555PubMedCrossRefGoogle Scholar
  30. 30.
    Watanabe I, Kodama Y, Harayama S (2001) Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. Journal of Microbiological Methods 44:253–262Google Scholar
  31. 31.
    Pruvost M, Grange T, Geigl EM (2005) Minimizing DNA contamination by using UNG-coupled quantitative real-time PCR on degraded DNA samples: application to ancient DNA studies. Biotechniques 38 (4):569–575Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Olivier Gorgé
    • 1
  • E. Andrew Bennett
    • 1
  • Diyendo Massilani
    • 1
  • Julien Daligault
    • 1
  • Melanie Pruvost
    • 1
  • Eva-Maria Geigl
    • 1
  • Thierry Grange
    • 1
  1. 1.Institut Jacques Monod, UMR 7592, CNRS, Université Paris DiderotParisFrance

Personalised recommendations