Advertisement

Microscopic and Biochemical Visualization of Auxins in Plant Tissues

  • Joshua J. BlakesleeEmail author
  • Angus S. Murphy
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1398)

Abstract

Auxins are a particularly notable class of phytohormones in that they regulate plant growth and development at sites of synthesis, and via a regulated polar transport system comprising PIN, ABCB, and AUX/LAX transport proteins. In order to fully understand auxin-regulated physiological processes, it is therefore essential to be able to determine where indole-3-acetic acid and related compounds are being synthesized, where they are transported to, and how much IAA is accumulating in any given tissue. Auxin may be visualized either indirectly, through the use of auxin responsive promoters; directly, through the use of radiolabelled auxin or fluorescent auxin analogs; or biochemically through extraction and mass-spectrometric quantification of auxin and auxin metabolites from target cells or tissues. Here we focus on the use of the DR5::GUS synthetic auxin promoter reporter construct, fluorescent auxin analogs, and confirmatory biochemical (high-pressure liquid chromatography tandem mass-spectrometry) visualization of auxin and auxin metabolites.

Key words

Auxin DR5::GUS Fluorescent auxin analogs LC-MS/MS 

References

  1. 1.
    Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E, Yoshida S, Fujioka S, Asami T, Shimada Y (2010) Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol 51(4):524–536CrossRefPubMedGoogle Scholar
  2. 2.
    Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63(8):2853–2872CrossRefPubMedGoogle Scholar
  3. 3.
    Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8(5):494–500CrossRefPubMedGoogle Scholar
  4. 4.
    Peer WA, Blakeslee JJ, Yang HB, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4(3):487–504CrossRefPubMedGoogle Scholar
  5. 5.
    Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302(5642):81–84CrossRefPubMedGoogle Scholar
  6. 6.
    Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39–44CrossRefPubMedGoogle Scholar
  7. 7.
    Grunewald W, Friml J (2010) The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J 29(16):2700–2714PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazimalova E (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10(12):249PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Friml J (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol 89(2-3):231–235CrossRefPubMedGoogle Scholar
  10. 10.
    Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415(6873):806–809CrossRefPubMedGoogle Scholar
  11. 11.
    Mravec J, Kubes M, Bielach A, Gaykova V, Petrasek J, Skupa P, Chand S, Benkova E, Zazimalova E, Friml J (2008) Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135(20):3345–3354CrossRefPubMedGoogle Scholar
  12. 12.
    Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9(11):1963–1971PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ et al (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482(7383):103–U132CrossRefPubMedGoogle Scholar
  14. 14.
    Blakeslee JJ, Zhou HW, Heath JT, Skottke KR, Barrios JAR, Liu SY, DeLong A (2008) Specificity of RCN1-mediated protein phosphatase 2A regulation in meristem organization and stress response in roots. Plant Physiol 146(2):539–553PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Pattison RJ, Catala C (2012) Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J 70(4):585–598Google Scholar
  16. 16.
    Zhou J, Yu FB, Wang XM, Yang Y, Yu CL, Liu HJ, Cheng Y, Yan CQ, Chen JP (2014) Specific expression of DR5 promoter in rice roots using a tCUP derived promoter-reporter system. PLoS One 9(1):e87008PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Chen YR, Yordanov YS, Ma C, Strauss S, Busov VB (2013) DR5 as a reporter system to study auxin response in Populus. Plant Cell Rep 32(3):453–463CrossRefPubMedGoogle Scholar
  18. 18.
    Jefferson RA, Burgess SM, Hirsh D (1986) Beta-glucuronidase from Escherichia-coli as a gene-fusion marker. Proc Natl Acad Sci U S A 83(22):8447–8451PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Pengelly W, Meins F (1977) Specific radioimmunoassay for nanogram quantities of auxin, indole-3-acetic-acid. Planta 136(2):173–180CrossRefPubMedGoogle Scholar
  20. 20.
    Takahashi N (1986) Chemistry of plant hormones. CRC Press, Boca Raton, FLGoogle Scholar
  21. 21.
    Marcussen J, Ulvskov P, Olsen CE, Rajagopal R (1989) Preparation and properties of antibodies against indoleacetic-acid (Iaa)-C5-Bsa, a novel ring-coupled Iaa antigen, as compared to 2 other types of Iaa-specific antibodies. Plant Physiol 89(4):1071–1078PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Fernandez B, Centeno ML, Feito I, Sancheztames R, Rodriguez A (1995) Simultaneous analysis of cytokinins, auxins and abscisic-acid by combined immunoaffinity chromatography, high-performance liquid-chromatography and immunoassay. Phytochem Anal 6(1):49–54CrossRefGoogle Scholar
  23. 23.
    Jiraskova D, Poulickova A, Novak O, Sedlakova K, Hradecka V, Strnad M (2009) High-throughput screening technology for monitoring phytohormone production in microalgae. J Phycol 45(1):108–118CrossRefGoogle Scholar
  24. 24.
    Hayashi KI, Nakamura S, Fukunaga S, Nishimura T, Jenness MK, Murphy AS, Motose H, Nozaki H, Furutani M, Aoyama T (2014) Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc Natl Acad Sci U S A 111(31):11557–11562PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Ohwaki Y (1966) Thin-layer chromatography of diffusible auxin of corn coleoptiles. Bot Mag Tokyo 79(934):200CrossRefGoogle Scholar
  26. 26.
    Bayer MH, Ahuja MR (1968) Tumor formation in Nicotiana—auxin levels and auxin inhibitors in normal and tumor-prone genotypes. Planta 79(4):292–8CrossRefPubMedGoogle Scholar
  27. 27.
    Raj RK (1970) Indoles and Auxins.8. partition chromatography of naturally occurring indoles on cellulose thin layers and sephadex columns. Anal Biochem 33(2):471–4CrossRefPubMedGoogle Scholar
  28. 28.
    Akiyoshi DE, Morris RO, Hinz R, Mischke BS, Kosuge T, Garfinkel DJ, Gordon MP, Nester EW (1983) Cytokinin auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. P Natl Acad Sci-Biol 80(2):407–411CrossRefGoogle Scholar
  29. 29.
    Morgan PW, Durham JI (1983) Strategies for extracting, purifying, and assaying auxins from plant-tissues. Bot Gaz 144(1):20–31CrossRefGoogle Scholar
  30. 30.
    Goswami D, Thakker JN, Dhandhukia PC (2015) Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from L-tryptophan (Trp) using HPTLC. J Microbiol Methods 110:7–14CrossRefPubMedGoogle Scholar
  31. 31.
    Cohen JD, Lilly N (1984) Changes in (45)calcium concentration following auxin treatment of protoplasts isolated from etiolated soybean hypocotyls. Plant Physiol 75:109–109Google Scholar
  32. 32.
    Rivier L (1986) GC-MS of auxins. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, volume 3: gas chromatography/mass spectrometry. Springer-Verlag, Berlin Heidelberg, pp 146–188CrossRefGoogle Scholar
  33. 33.
    Barkawi LS, Tam YY, Tillman JA, Normanly J, Cohen JD (2010) A high-throughput method for the quantitative analysis of auxins. Nat Protoc 5(10):1609–1618CrossRefPubMedGoogle Scholar
  34. 34.
    Novak O, Henykova E, Sairanen I, Kowalczyk M, Pospisil T, Ljung K (2012) Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J 72(3):523–536CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Horticulture and Crop Sciences, Ohio Agricultural Research and Development CenterThe Ohio State UniversityWoosterUSA
  2. 2.Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkUSA

Personalised recommendations