Advertisement

Physiological Analysis of Phototropic Responses in Arabidopsis

  • Mathias ZeidlerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1398)

Abstract

Plants utilize light as sole energy source. To maximize light capture they are able to detect the light direction and orient themselves towards the light source. This phototropic response is mediated by the plant blue light photoreceptors phototropin1 and 2 (phot1 and phot2). Although fully differentiated plants also exhibit this response it can be best observed in etiolated seedlings. Differences in light between the illuminated and shaded site of a seedling stem lead to changes in the auxin-distribution, resulting in cell elongation on the shaded site. Since phototropism connects light perception, signaling, and auxin transport, it is of great interest to analyze this response with a fast and simple method.

Here we describe a method to analyze the phototropic response of Arabidopsis seedlings. With numerous mutants available, its fast germination and its small size Arabidopsis is well suited for this analysis. Different genotypes can be simultaneously probed in less than a week.

Key words

Phototropism Arabidopsis Phototropin 

Notes

Acknowledgements

This work was supported by DFG grant ZE485/2-2 to MZ. I thank Anna Lena Lichtenthäler and Henrik Johansson for critical reading of the manuscript.

References

  1. 1.
    Whippo CW, Hangarter RP (2006) Phototropism: bending towards enlightenment. Plant Cell 18(5):1110–1119. doi: 10.1105/tpc.105.039669 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Darwin C (1880) The power of movements in plants. John Murray, LondonCrossRefGoogle Scholar
  3. 3.
    Went FW (1926) On growth accelerating substances in the coleoptile of Avena sativa. Proc K Akad Wet 30:10–19Google Scholar
  4. 4.
    Cholodny N (1927) Wuchshormone und Tropismen bei den Pflanzen. Biol Zentralbl 47:604–626Google Scholar
  5. 5.
    Kögel F, Haagen-Smit AJ (1931) Mitteilung über pflanzliche Wachstumsstoffe. Über die Chemie des Wuchsstoffes. Proc K Ned Akad Wet 34:1411–1416Google Scholar
  6. 6.
    Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278(5346):2120–2123CrossRefPubMedGoogle Scholar
  7. 7.
    Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A 98(12):6969–6974PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Okajima K, Matsuoka D, Tokutomi S (2011) LOV2-linker-kinase phosphorylates LOV1-containing N-terminal polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett 585(21):3391–3395CrossRefPubMedGoogle Scholar
  9. 9.
    Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291(5511):2138–2141CrossRefPubMedGoogle Scholar
  10. 10.
    Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1(7):939–948CrossRefPubMedGoogle Scholar
  11. 11.
    Parks BM, Quail PH, Hangarter RP (1996) Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol 110(1):155–162PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Lariguet P, Fankhauser C (2004) Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J 40(5):826–834CrossRefPubMedGoogle Scholar
  13. 13.
    Rösler J, Klein I, Zeidler M (2007) Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A. Proc Natl Acad Sci U S A 104(25):10737–10742PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Rösler J, Jaedicke K, Zeidler M (2010) Cytoplasmic phytochrome action. Plant Cell Physiol 51(8):1248–1254CrossRefPubMedGoogle Scholar
  15. 15.
    Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci U S A 101(8):2223–2228PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Hangarter RP (1997) Gravity, light and plant form. Plant Cell Environ 20(6):796–800CrossRefPubMedGoogle Scholar
  17. 17.
    Janoudi AK, Gordon WR, Wagner D, Quail P, Poff KL (1997) Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in Arabidopsis thaliana. Plant Physiol 113(3):975–979Google Scholar
  18. 18.
    Tsuchida-Mayama T, Sakai T, Hanada A, Uehara Y, Asami T, Yamaguchi S (2010) Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J 62(4):653–662CrossRefPubMedGoogle Scholar
  19. 19.
    Motchoulski A, Liscum E (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286(5441):961–964CrossRefPubMedGoogle Scholar
  20. 20.
    Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2. A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12(2):225–236PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, Kami C, de Carbonnel M, Alonso JM, Ecker JR, Liscum E, Fankhauser C (2006) PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci 103(26):10134–10139PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    de Carbonnel M, Davis P, Roelfsema MR, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C (2010) The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol 152(3):1391–1405PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Demarsy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie J, Shimazaki K, Tokutomi S, Fankhauser C (2012) Phytochrome kinase substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 31(16):3457–3467PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Haga K, Takano M, Neumann R, Iino M (2005) The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17(1):103–115PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Kami C, Allenbach L, Zourelidou M, Ljung K, Schutz F, Isono E, Watahiki MK, Yamamoto KT, Schwechheimer C, Fankhauser C (2014) Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. Plant J 77(3):393–403. doi: 10.1111/tpj.12395 CrossRefPubMedGoogle Scholar
  26. 26.
    Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415(6873):806–809. doi: 10.1038/415806a CrossRefPubMedGoogle Scholar
  27. 27.
    Ding Z, Galvan-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13(4):447–452. doi: 10.1038/ncb2208 CrossRefPubMedGoogle Scholar
  28. 28.
    Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13(11):2441–2454PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Nagashima A, Uehara Y, Sakai T (2008) The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N-1-naphthyphthalamic acid on the phototropic and gravitropic responses of Arabidopsis hypocotyls. Plant Cell Physiol 49(8):1250–1255. doi: 10.1093/pcp/pcn092 CrossRefPubMedGoogle Scholar
  30. 30.
    Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS (2011) phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9(6):e1001076. doi: 10.1371/journal.pbio.1001076 PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E (2008) Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1(1):129–144. doi: 10.1093/mp/ssm013 CrossRefPubMedGoogle Scholar
  32. 32.
    Whippo CW, Hangarter RP (2003) Second positive phototropism results from coordinated Co-action of the phototropins and cryptochromes. Plant Physiol 132(3):1499PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Yamamoto K, Suzuki T, Aihara Y, Haga K, Sakai T, Nagatani A (2014) The phototropic response is locally regulated within the topmost light-responsive region of the Arabidopsis thaliana seedling. Plant Cell Physiol 55(3):497–506. doi: 10.1093/pcp/pct184 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Plant PhysiologyJustus-Liebig-UniversityGiessenGermany

Personalised recommendations