Advertisement

Determining Nucleosome Position at Individual Loci After Biotic Stress Using MNase-qPCR

  • Margaux Kaster
  • Sascha LaubingerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1398)

Abstract

Nucleosome occupancy in promoter and genic regions can severely influence the transcription levels. Few methods have been established to investigate the nucleosome occupancy along the DNA. In this chapter we describe a detailed protocol to analyze the nucleosome occupancy at a specific locus using MNase-pPCR.

Key words

MNase-qPCR Nucleosome occupancy Nuclei isolation Epigenetics Biotic stress Arabidopsis 

References

  1. 1.
    Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109(32):E2183–2191. doi: 10.1073/pnas.1209329109, 1209329109[pii]PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Farrona S, Hurtado L, Bowman JL, Reyes JC (2004) The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development 131(20):4965–4975. doi: 10.1242/dev.01363 CrossRefPubMedGoogle Scholar
  3. 3.
    Sang Y, Silva-Ortega CO, Wu S, Yamaguchi N, Wu MF, Pfluger J, Gillmor CS, Gallagher KL, Wagner D (2012) Mutations in two non-canonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects. Plant J. doi: 10.1111/tpj.12009 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Han SK, Sang Y, Rodrigues A, Biol F, Wu MF, Rodriguez PL, Wagner D (2012) The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24(12):4892–4906. doi: 10.1105/tpc.112.105114 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Jerzmanowski A (2007) SWI/SNF chromatin remodeling and linker histones in plants. Biochim Biophys Acta 1769(5-6):330–345. doi: 10.1016/j.bbaexp.2006.12.003 CrossRefPubMedGoogle Scholar
  6. 6.
    Zentner GE, Henikoff S (2012) Surveying the epigenomic landscape, one base at a time. Genome Biol 13(10):250. doi: 10.1186/gb4051 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Simon JM, Giresi PG, Davis IJ, Lieb JD (2013) A detailed protocol for formaldehyde-assisted isolation of regulatory elements (FAIRE). Current protocols in molecular biology Chapter 21:Unit21.26. doi: 10.1002/0471142727.mb2126s102
  8. 8.
    Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17(6):877–885. doi: 10.1101/gr.5533506 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. doi: 10.1038/nmeth.2688, nmeth.2688[pii]PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193(4256):848–856CrossRefPubMedGoogle Scholar
  11. 11.
    Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132(2):311–322. doi: 10.1016/j.cell.2007.12.014, S0092-8674(07)01613-3[pii]PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Berr A, Shafiq S, Shen WH (2011) Histone modifications in transcriptional activation during plant development. Biochim Biophys Acta 1809(10):567–576. doi: 10.1016/j.bbagrm.2011.07.001 CrossRefPubMedGoogle Scholar
  13. 13.
    Alexander M, Heppel LA, Hurwitz J (1961) The purification and properties of micrococcal nuclease. J Biol Chem 236:3014–3019PubMedGoogle Scholar
  14. 14.
    Clark DJ, Felsenfeld G (1991) Formation of nucleosomes on positively supercoiled DNA. EMBO J 10(2):387–395PubMedCentralPubMedGoogle Scholar
  15. 15.
    Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin—second in review series on chromatin dynamics. Embo Rep 3(3):224–229. doi: 10.1093/embo-reports/kvf053 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Kwon CS, Lee D, Choi G, Chung WI (2009) Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J 60(1):112–121. doi: 10.1111/j.1365-313X.2009.03938.x, TPJ3938[pii]CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Center for Plant Molecular Biology (ZMBP)University of TübingenTübingenGermany
  2. 2.Chemical Genomics Centre (CGC) of the Max Planck SocietyDortmundGermany
  3. 3.MPI for Developmental BiologyTübingenGermany

Personalised recommendations