Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca2+ Transients in Plants

  • Fabian Trempel
  • Stefanie Ranf
  • Dierk Scheel
  • Justin LeeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1398)


Ca2+ is a secondary messenger involved in early signaling events triggered in response to a plethora of biotic and abiotic stimuli. In plants, environmental cues that induce cytosolic Ca2+ elevation include touch, reactive oxygen species, cold shock, and salt or osmotic stress. Furthermore, Ca2+ signaling has been implicated in early stages of plant–microbe interactions of both symbiotic and antagonistic nature. A long-standing hypothesis is that there is information encoded in the Ca2+ signals (so-called Ca2+ signatures) to enable plants to differentiate between these stimuli and to trigger the appropriate cellular response. Qualitative and quantitative measurements of Ca2+ signals are therefore needed to dissect the responses of plants to their environment. Luminescence produced by the Ca2+ probe aequorin upon Ca2+ binding is a widely used method for the detection of Ca2+ transients and other changes in Ca2+ concentrations in cells or organelles of plant cells. In this chapter, using microbe-associated molecular patterns (MAMPs), such as the bacterial-derived flg22 or elf18 peptides as stimuli, a protocol for the quantitative measurements of Ca2+ fluxes in apoaequorin-expressing seedlings of Arabidopsis thaliana in 96-well format is described.

Key words

Ca2+ measurements Aequorin Microbe-associated molecular pattern (MAMP) 


  1. 1.
    Dodd AN, Kudla J, Sanders D (2010) The language of calcium signalling. Annu Rev Plant Biol 61:593–620. doi: 10.1146/annurev-arplant-070109-104628 CrossRefPubMedGoogle Scholar
  2. 2.
    Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343(6169):408–411. doi: 10.1126/science.1244454 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563. doi: 10.1105/tpc.109.072686 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Mithofer A, Mazars C (2002) Aequorin-based measurements of intracellular Ca2+-signatures in plant cells. Biol Proced Online 4:105–118. doi: 10.1251/bpo40 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11(4):691–706PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Seybold H, Trempel F, Ranf S, Scheel D, Romeis T, Lee J (2014) Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. New Phytol 204:782–790. doi: 10.1111/nph.13031 CrossRefPubMedGoogle Scholar
  7. 7.
    Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci U S A 111(17):6497–6502. doi: 10.1073/pnas.1319955111 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500(7463):422–426. doi: 10.1038/nature12478 CrossRefPubMedGoogle Scholar
  9. 9.
    Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352(6335):524–526. doi: 10.1038/352524a0 CrossRefPubMedGoogle Scholar
  10. 10.
    Bonora M, Giorgi C, Bononi A, Marchi S, Patergnani S, Rimessi A, Rizzuto R, Pinton P (2013) Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 8(11):2105–2118. doi: 10.1038/nprot.2013.127 CrossRefPubMedGoogle Scholar
  11. 11.
    Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D (2011) Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J 68(1):100–113. doi: 10.1111/j.1365-313X.2011.04671.x CrossRefPubMedGoogle Scholar
  12. 12.
    Ranf S, Grimmer J, Pöschl Y, Pecher P, Chinchilla D, Scheel D, Lee J (2012) Defense-related calcium signaling mutants uncovered via a quantitative high-throughput screen in Arabidopsis thaliana. Mol Plant 5(1):115–130. doi: 10.1093/mp/ssr064 CrossRefPubMedGoogle Scholar
  13. 13.
    Mehlmer N, Parvin N, Hurst CH, Knight MR, Teige M, Vothknecht UC (2012) A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. J Exp Bot 63(4):1751–1761. doi: 10.1093/jxb/err406 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135(3):1471–1479. doi: 10.1104/pp. 104.042663 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fabian Trempel
    • 1
  • Stefanie Ranf
    • 1
    • 2
  • Dierk Scheel
    • 1
  • Justin Lee
    • 1
    Email author
  1. 1.Department of Stress & Developmental BiologyLeibniz Institute of Plant BiochemistryHalle/SaaleGermany
  2. 2.Phytopathology, Center of Life and Food Sciences WeihenstephanTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations