Advertisement

Virus-Induced Gene Silencing for Gene Function Studies in Barley

  • Maria Barciszewska-Pacak
  • Artur Jarmołowski
  • Andrzej PacakEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1398)

Abstract

Virus-Induced Gene Silencing (VIGS) creates a natural antiviral defense in plants. However, it has been also a powerful tool for endogenous gene silencing in dicot and monocot plants by exploitation of recombinant viruses, harboring silencing inducing sequences. The Barley Stripe Mosaic Virus (BSMV) based VIGS system is an efficient and rapid RNAi approach that is routinely applied in functional genomics studies of cereals. We present here a protocol for BSMV VIGS application in barley based on mechanical inoculation of the plants with in vitro transcribed recombinant BSMV RNAs as the silencing triggers.

Key words

Virus-induced gene silencing (VIGS) Virus Barley stripe mosaic virus (BSMV) Posttranscriptional gene silencing (PTGS) RNA interference (RNAi) Functional genomics Barley 

Notes

Acknowledgements

This work has been supported by the National Science Centre decision no DEC-2013/11/B/NZ9/01761. The pictures in Figs. 5 and 6 were taken by A. Pacak during his Marie Curie Intra-European fellowship BARPHO No. 025110, Aarhus University.

References

  1. 1.
    Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell Online 2(4):279–289CrossRefGoogle Scholar
  2. 2.
    Van der Krol AR, Mur LA, Beld M, Mol J, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell Online 2(4):291–299CrossRefGoogle Scholar
  3. 3.
    Baulcombe D (2002) Viral suppression of systemic silencing. Trends Microbiol 10(7):306–308CrossRefPubMedGoogle Scholar
  4. 4.
    Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21(17):4671–4679PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952CrossRefPubMedGoogle Scholar
  6. 6.
    Plasterk RH (2002) RNA silencing: the genome’s immune system. Science 296(5571):1263–1265CrossRefPubMedGoogle Scholar
  7. 7.
    Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775):293–296CrossRefPubMedGoogle Scholar
  8. 8.
    Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song J-J, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441CrossRefPubMedGoogle Scholar
  9. 9.
    Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620CrossRefPubMedGoogle Scholar
  10. 10.
    Baulcombe D (2002) RNA silencing. Curr Biol 12(3):R82–R84CrossRefPubMedGoogle Scholar
  11. 11.
    Cerutti H (2003) RNA interference: traveling in the cell and gaining functions? Trends Genet 19(1):39–46CrossRefPubMedGoogle Scholar
  12. 12.
    Hull R (2001) Matthews’ plant virology. Academic, New YorkGoogle Scholar
  13. 13.
    Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant-Microbe Interact 15(8):826–833CrossRefPubMedGoogle Scholar
  14. 14.
    Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6(3):206–220, http://www.nature.com/nrg/journal/v6/n3/suppinfo/nrg1555_S1.html CrossRefPubMedGoogle Scholar
  15. 15.
    Waterhouse PM, Wang M-B, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411(6839):834–842CrossRefPubMedGoogle Scholar
  16. 16.
    Lacomme C, Hrubikova K (2003) Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J 34(4):543–553Google Scholar
  17. 17.
    Pantaleo V, Szittya G, Burgyán J (2007) Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J Virol 81(8):3797–3806PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Szittya G, Molnar A, Silhavy D, Hornyik C, Burgyan J (2002) Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 14(2):359–372PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313(5783):68–71CrossRefPubMedGoogle Scholar
  20. 20.
    Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22(5):268–280CrossRefPubMedGoogle Scholar
  21. 21.
    Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208CrossRefPubMedGoogle Scholar
  22. 22.
    Song J-J, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, Joshua-Tor L (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Mol Biol 10(12):1026–1032, http://www.nature.com/nsmb/journal/v10/n12/suppinfo/nsb1016_S1.html CrossRefGoogle Scholar
  23. 23.
    Zhang X, Yuan Y-R, Pei Y, Lin S-S, Tuschl T, Patel DJ, Chua N-H (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20(23):3255–3268PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Waterhouse PM, Fusaro AF (2006) Viruses face a double defense by plant small RNAs. Science 313(5783):54–55CrossRefPubMedGoogle Scholar
  25. 25.
    Ruiz-Ferrer V, Voinnet O (2007) Viral suppression of RNA silencing: 2b wins the Golden Fleece by defeating Argonaute. Bioessays 29(4):319–323. doi: 10.1002/bies.20556 CrossRefPubMedGoogle Scholar
  26. 26.
    Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 11(7):1207–1215PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Vaistij FE, Jones L, Baulcombe DC (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell Online 14(4):857–867CrossRefGoogle Scholar
  28. 28.
    Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and-independent cell-to-cell movement of RNA silencing. EMBO J 22(17):4523–4533Google Scholar
  29. 29.
    Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19(18):2164–2175PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Silhavy D, Burgyán J (2004) Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci 9(2):76–83CrossRefPubMedGoogle Scholar
  31. 31.
    Lu R, Folimonov A, Shintaku M, Li W-X, Falk BW, Dawson WO, Ding S-W (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 101(44):15742–15747PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu YP, Dolja VV, Calvino LF, López-Moya JJ, Burgyán J (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25(12):2768–2780Google Scholar
  33. 33.
    Vargason JM, Szittya G, Burgyán J, Hall TMT (2003) Size Selective Recognition of siRNA by an RNA Silencing Suppressor. Cell 115(7):799–811, http://dx.doi.org/10.1016/S0092-8674(03)00984-X CrossRefPubMedGoogle Scholar
  34. 34.
    Anandalakshmi R, Marathe R, Ge X, Herr J, Mau C, Mallory A, Pruss G, Bowman L, Vance VB (2000) A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290(5489):142–144CrossRefPubMedGoogle Scholar
  35. 35.
    Várallyay É, Oláh E, Havelda Z (2014) Independent parallel functions of p19 plant viral suppressor of RNA silencing required for effective suppressor activity. Nucleic Acids Res 42(1):599–608PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Azevedo J, Garcia D, Pontier D, Ohnesorge S, Yu A, Garcia S, Braun L, Bergdoll M, Hakimi MA, Lagrange T (2010) Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24(9):904–915PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    de Ronde D, Pasquier A, Ying S, Butterbach P, Lohuis D, Kormelink R (2014) Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Mol Plant Pathol 15:185–195CrossRefPubMedGoogle Scholar
  38. 38.
    Giner A, Lakatos L, García-Chapa M, López-Moya JJ, Burgyán J (2010) Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog 6(7), e1000996PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Trinks D, Rajeswaran R, Shivaprasad P, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79(4):2517–2527PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39(5):734–746Google Scholar
  41. 41.
    Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2(2):109–113CrossRefPubMedGoogle Scholar
  42. 42.
    Matthews PD, Luo R, Wurtzel ET (2003) Maize phytoene desaturase and ζ-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot 54(391):2215–2230Google Scholar
  43. 43.
    Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30(3):315–327Google Scholar
  44. 44.
    Kumagai M, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill L (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci 92(5):1679–1683PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Rabindran S, Dawson WO (2001) Assessment of recombinants that arise from the use of a TMV-based transient expression vector. Virology 284(2):182–189CrossRefPubMedGoogle Scholar
  46. 46.
    Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell Online 10(6):937–946CrossRefGoogle Scholar
  47. 47.
    Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25(2):237–245Google Scholar
  48. 48.
    Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC (2005) NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15(10):968–973CrossRefPubMedGoogle Scholar
  49. 49.
    Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22(21):5690–5699Google Scholar
  50. 50.
    Valentine T, Shaw J, Blok VC, Phillips MS, Oparka KJ, Lacomme C (2004) Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiol 136(4):3999–4009PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005) Virus-Induced Gene Silencing-Based Functional Characterization of Genes Associated with Powdery Mildew Resistance in Barley. Plant Physiol 138(4):2155–2164. doi: 10.1104/pp. 105.062810 PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138(4):2165–2173. doi: 10.1104/pp. 105.061861 PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Shen Q-H, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ülker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315(5815):1098–1103CrossRefPubMedGoogle Scholar
  54. 54.
    Ding XS, Schneider WL, Chaluvadi SR, Mian MR, Nelson RS (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant-Microbe Interact 19(11):1229–1239CrossRefPubMedGoogle Scholar
  55. 55.
    Pacak A, Strozycki PM, Barciszewska-Pacak M, Alejska M, Lacomme C, Jarmolowski A, Szweykowska-Kulinska Z, Figlerowicz M (2010) The brome mosaic virus-based recombination vector triggers a limited gene silencing response depending on the orientation of the inserted sequence. Arch Virol 155(2):169–179. doi: 10.1007/s00705-009-0556-9 CrossRefPubMedGoogle Scholar
  56. 56.
    Agranovsky A, Dolja V, Atabekov J (1982) Structure of the 3′ extremity of barley stripe mosaic virus RNA: Evidence for internal poly (A) and a 3′-terminal tRNA-like structure. Virology 119(1):51–58CrossRefPubMedGoogle Scholar
  57. 57.
    Petty IT, French R, Jones RW, Jackson AO (1990) Identification of barley stripe mosaic virus genes involved in viral RNA replication and systemic movement. EMBO J 9(11):3453–3457PubMedCentralPubMedGoogle Scholar
  58. 58.
    Petty I, Jackson A (1990) Mutational analysis of barley stripe mosaic virus RNA β. Virology 179(2):712–718CrossRefPubMedGoogle Scholar
  59. 59.
    Torrance L, Cowan G, Gillespie T, Ziegler A, Lacomme C (2006) Barley stripe mosaic virus-encoded proteins triple-gene block 2 and γb localize to chloroplasts in virus-infected monocot and dicot plants, revealing hitherto-unknown roles in virus replication. J Gen Virol 87(8):2403–2411CrossRefPubMedGoogle Scholar
  60. 60.
    Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M (2007) Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol Plant-Microbe Interact 20(11):1323–1331CrossRefPubMedGoogle Scholar
  61. 61.
    Pacak A, Geisler K, Jorgensen B, Barciszewska-Pacak M, Nilsson L, Nielsen T, Johansen E, Gronlund M, Jakobsen I, Albrechtsen M (2010) Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat. Plant Methods 6(1):26PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Kawalek A, Dmochowska-Boguta M, Nadolska-Orczyk A, Orczyk W (2012) A new BSMV-based vector with modified β molecule allows simultaneous and stable silencing of two genes. Cell Mol Biol Lett 17(1):107–123CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maria Barciszewska-Pacak
    • 1
  • Artur Jarmołowski
    • 1
  • Andrzej Pacak
    • 1
    Email author
  1. 1.Department of Gene Expression, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland

Personalised recommendations