Construction of Artificial miRNAs to Prevent Drought Stress in Solanum tuberosum

  • Anna Wyrzykowska
  • Marcin Pieczynski
  • Zofia Szweykowska-KulinskaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1398)


The use of artificial microRNAs (amiRNAs) is still a relatively new technique in molecular biology with a wide range of applications in life sciences. Here, we describe the silencing of the CBP80/ABH1 gene in Solanum tuberosum with the use of amiRNA. The CBP80/ABH1 protein is part of the Cap Binding Complex (CBC), which is involved in plant responses to drought stress conditions. Transformed plants with a decreased level of CBP80/ABH1 display increased tolerance to water shortage conditions. We describe how to design amiRNA with the Web MicroRNA Designer platform in detail. Additionally, we explain how to perform all steps of a procedure aiming to obtain transgenic potato plants with the use of designed amiRNA, through callus tissue regeneration and Agrobacterium tumefaciens strain LBA4404 as a transgene carrier.

Key words

Artificial microRNA (amiRNA) Solanum tuberosum Drought stress CBP80/ABH1 Transformation Agrobacterium tumefaciens 


  1. 1.
    Kim YJ, Zheng B, Yu Y et al (2011) The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–822PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Xie Z, Allen E, Fahlgren N et al (2005) Expression of Arabidopsis MIRNA Genes. Plant Physiol 138:2145–2154PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Schauer SE, Jacobsen SE, Meinke DW et al (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7:487–491CrossRefPubMedGoogle Scholar
  4. 4.
    Schmitz RJ, Hong L, Fitzpatrick KE et al (2007) DICER-LIKE 1 and DICER-LIKE 3 redundantly act to promote flowering via repression of FLOWERING LOCUS C in Arabidopsis thaliana. Genetics 176:1359–1362PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Szarzynska B, Sobkowiak L, Pant BD et al (2009) Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids Res 37:3083–3093PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Raczynska KD, Stepien A, Kierzkowski D et al (2014) The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 42:1224–1244PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Yu B, Bi L, Zheng B et al (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A 105:10073–10078PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Kmieciak M, Simpson CG, Lewandowska D et al (2002) Cloning and characterization of two subunits of Arabidopsis thaliana nuclear cap-binding complex. Gene 283:171–183CrossRefPubMedGoogle Scholar
  9. 9.
    Park MY, Wu G, Gonzalez-Sulser A et al (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102:3691–3696PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935CrossRefPubMedGoogle Scholar
  11. 11.
    Ramachandran V, Chen X (2008) Degradation of micro RNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Wang L, Song X, Gu L et al (2013) NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. Plant Cell 25:715–727PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Rajagopalan R, Vaucheret H, Trejo J et al (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Pouch-Pélissier MN, Pélissier T, Elmayan T et al (2008) SINE RNA induces severe developmental defects in Arabidopsis thaliana and interacts with HYL1 (DRB1), a key member of the DCL1 complex. PLoS Genet. doi: 10.1371/journal.pgen.1000096 PubMedCentralPubMedGoogle Scholar
  16. 16.
    Furumizu C, Tsukaya H, Komeda Y (2010) Characterization of EMU, the Arabidopsis homolog of the yeast THO complex member HPR1. RNA 16:1809–1817PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Jung JH, Seo PJ, Ahn JH et al (2012) Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J Biol Chem 287:16007–16016PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Calderon-Villalobos LIA, Kuhnle C, Dohmann EMN et al (2005) The evolutionarily conserved TOUGH protein is required for proper development of Arabidopsis thaliana. Plant Cell 17:2473–2485PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Lee B, Kapoor A, Zhu J et al (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18:1736–1749PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Zhan X, Wang B, Li H et al (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci U S A 109:18198–18203PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Wu X, Shi Y, Li J et al (2013) A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell 23:645–657Google Scholar
  22. 22.
    Speth C, Willing EM, Rausch S et al (2013) RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant J 76:433–445CrossRefPubMedGoogle Scholar
  23. 23.
    Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216CrossRefPubMedGoogle Scholar
  24. 24.
    Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190CrossRefPubMedGoogle Scholar
  25. 25.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:68–73CrossRefGoogle Scholar
  26. 26.
    Schwab R, Ossowski S (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Matzke AJ, Chilton MD (1981) Site-specific insertion of genes into T-DNA of the Agrobacterium tumor-inducing plasmid: an approach to genetic engineering of higher plant cells. J Mol Appl Genet 1:39–49PubMedGoogle Scholar
  28. 28.
    Duckely M, Hohn B (2003) The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 223:1–6CrossRefPubMedGoogle Scholar
  29. 29.
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  30. 30.
    Millam S (2007) Potato (Solanum tuberosum L.). In: Wang K (ed) Methods in molecular biology. Humana Press Inc., Totowa, NJ, pp 25–35Google Scholar
  31. 31.
    Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207CrossRefPubMedGoogle Scholar
  32. 32.
    Wesley SV, Helliwell C, Smith N et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590CrossRefPubMedGoogle Scholar
  33. 33.
    Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690CrossRefPubMedGoogle Scholar
  34. 34.
    Huang X, Madan A (1999) CAP3: A DNA Sequence Assembly Program. Genome Res. doi: 10.1101/gr.9.9.868 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  36. 36.
    Pieczynski M, Marczewski W, Hennig J et al (2012) Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnol J 11:459–469CrossRefPubMedGoogle Scholar
  37. 37.
    Ausubel FM, Brent R, Kingston RE et al (2003) Current protocols in molecular biology. John Wiley & Sons Inc., Hoboken, NJGoogle Scholar
  38. 38.
    Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16:664–668PubMedGoogle Scholar
  39. 39.
    Mersereau M, Pazour GJ, Das A (1990) Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90:149–151CrossRefPubMedGoogle Scholar
  40. 40.
    Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anna Wyrzykowska
    • 1
  • Marcin Pieczynski
    • 1
  • Zofia Szweykowska-Kulinska
    • 1
    Email author
  1. 1.Department of Gene Expression, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations