Skip to main content

Using Arabidopsis Protoplasts to Study Cellular Responses to Environmental Stress

  • Protocol
  • First Online:
Environmental Responses in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1398))

Abstract

Arabidopsis mesophyll protoplasts can be readily isolated and transfected in order to transiently express proteins of interest. As freshly isolated mesophyll protoplasts maintain essentially the same physiological characteristics of whole leaves, this cell-based transient expression system can be used to molecularly dissect the responses to various stress conditions. The response of stress-responsive promoters to specific stimuli can be accessed via reporter gene assays. Additionally, reporter systems can be easily engineered to address other levels of regulation, such as transcript and/or protein stability. Here we present a detailed protocol for using the Arabidopsis mesophyll protoplast system to study responses to environmental stress, including preparation of reporter and effector constructs, large scale DNA purification, protoplast isolation, transfection, treatment, and quantification of luciferase-based reporter gene activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner S, Dark FA, Gerhardt P, Jeynes MH, Kandler O, Kellenberger E, Klieneberger-Nobel E, McQuillen K, Rubio-Huertos M, Salton MRJ, Strange RE, Tomcsik J, Weibull C (1958) Bacterial protoplasts. Nature 181(4625):1713–1715

    Article  Google Scholar 

  2. Weibull C (1953) The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme. J Bacteriol 66(6):688–695

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Eddy AA, Williamson DH (1957) A method of isolating protoplasts from yeast. Nature 179(4572):1252–1253

    Article  Google Scholar 

  4. Bachmann BJ, Bonner DM (1959) Protoplasts from neurospora crassa. J Bacteriol 78:550–556

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187(4741):962–963

    Article  Google Scholar 

  6. Power JB, Cocking EC (1969) A simple method for the isolation of very large numbers of leaf protoplasts by using mixtures of cellulase and pectinase. Biochem J 111(5):33P

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296(5852):72–74

    Article  CAS  Google Scholar 

  8. Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci U S A 82(17):5824–5828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Riggs CD, Bates GW (1986) Stable transformation of tobacco by electroporation: evidence for plasmid concatenation. Proc Natl Acad Sci U S A 83(15):5602–5606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F (1987) Hybrid genes in the analysis of transformation conditions : I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol Biol 8(5):363–373. doi:10.1007/BF00015814

    Article  CAS  PubMed  Google Scholar 

  11. Pandey S, Wang X-Q, Coursol SA, Assmann SM (2002) Preparation and applications of Arabidopsis thaliana guard cell protoplasts. New Phytol 153(3):517–526. doi:10.1046/j.0028-646X.2001.00329.x

    Article  CAS  Google Scholar 

  12. Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23(2):131–171. doi:10.1016/j.biotechadv.2004.09.008, S0734-9750(04)00096-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572. doi:10.1038/nprot.2007.199, doi:nprot.2007.199 [pii]

    Article  CAS  PubMed  Google Scholar 

  14. Miao Y, Jiang L (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat Protoc 2(10):2348–2353. doi:10.1038/nprot.2007.360, nprot.2007.360 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J (2013) Progress in plant protoplast research. Planta 238(6):991–1003. doi:10.1007/s00425-013-1936-7

    Article  CAS  Google Scholar 

  16. Li JF, Zhang D, Sheen J (2014) Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat Protoc 9(4):939–949. doi:10.1038/nprot.2014.061, nprot.2014.061 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16(9):2481–2498. doi:10.1105/tpc.104.022699tpc.104.022699 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inze D, Goossens A, Hilson P (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44(6):1065–1076. doi:10.1111/j.1365-313X.2005.02586.x, TPJ2586 [pii]

    Article  PubMed  Google Scholar 

  19. Vanden Bossche R, Demedts B, Vanderhaeghen R, Goossens A (2013) Transient expression assays in tobacco protoplasts. Methods Mol Biol 1011:227–239. doi:10.1007/978-1-62703-414-2_18

    Article  CAS  PubMed  Google Scholar 

  20. Kwiatkowska A, Zebrowski J, Oklejewicz B, Czarnik J, Halibart-Puzio J, Wnuk M (2014) The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation. Biochem Biophys Res Commun 447(2):285–291. doi:10.1016/j.bbrc.2014.03.141, S0006-291X(14)00601-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Li JF, Chung HS, Niu Y, Bush J, McCormack M, Sheen J (2013) Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25(5):1507–1522. doi:10.1105/tpc.113.112235, tpc.113.112235 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Fujikawa Y, Kato N (2007) Split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. Plant J 52(1):185–195. doi:10.1111/j.1365-313X.2007.03214.x, TPJ3214 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Li JF, Bush J, Xiong Y, Li L, McCormack M (2011) Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation. PLoS One 6(11), e27364. doi:10.1371/journal.pone.0027364PONE-D-11-13286 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Droge-Laser W (2006) Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46(5):890–900. doi:10.1111/j.1365-313X.2006.02731.x, TPJ2731 [pii]

    Article  CAS  PubMed  Google Scholar 

  25. Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127(4):1466–1475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature 464(7287):418–422. doi:10.1038/nature08794, nature08794 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rodrigues A, Adamo M, Crozet P, Margalha L, Confraria A, Martinho C, Elias A, Rabissi A, Lumbreras V, Gonzalez-Guzman M, Antoni R, Rodriguez PL, Baena-Gonzalez E (2013) ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25(10):3871–3884. doi:10.1105/tpc.113.114066, tpc.113.114066 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wehner N, Hartmann L, Ehlert A, Bottner S, Onate-Sanchez L, Droge-Laser W (2011) High-throughput protoplast transactivation (PTA) system for the analysis of Arabidopsis transcription factor function. Plant J 68(3):560–569. doi:10.1111/j.1365-313X.2011.04704.x

    Article  CAS  PubMed  Google Scholar 

  29. Wu S, Lu D, Kabbage M, Wei HL, Swingle B, Records AR, Dickman M, He P, Shan L (2011) Bacterial effector HopF2 suppresses Arabidopsis innate immunity at the plasma membrane. Mol Plant Microbe Interact 24(5):585–593. doi:10.1094/MPMI-07-10-0150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448(7156):938–942

    Article  CAS  PubMed  Google Scholar 

  31. Remy E, Cabrito TR, Batista RA, Hussein MA, Teixeira MC, Athanasiadis A, Sa-Correia I, Duque P (2014) Intron Retention in the 5′UTR of the Novel ZIF2 Transporter Enhances Translation to Promote Zinc Tolerance in Arabidopsis. PLoS Genet 10(5), e1004375. doi:10.1371/journal.pgen.1004375PGENETICS-D-13-02254 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  32. Martinho C, Confraria A, Elias A, Crozet P, Rubio-Somoza I, Weigel D, Baena-Gonzalez E (2015) Dissection of miRNA pathways using Arabidopsis mesophyll protoplasts. Mol Plant 8(2):261–275

    Article  CAS  PubMed  Google Scholar 

  33. Babu M, Griffiths JS, Huang TS, Wang A (2008) Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics 9:325. doi:10.1186/1471-2164-9-325, 1471-2164-9-325 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  34. Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16(3):596–615. doi:10.1105/tpc.019000tpc.019000 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Chang YM, Liu WY, Shih AC, Shen MN, Lu CH, Lu MY, Yang HW, Wang TY, Chen SC, Chen SM, Li WH, Ku MS (2012) Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 160(1):165–177. doi:10.1104/pp.112.203810, 112.203810 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Obulareddy N, Panchal S, Melotto M (2013) Guard cell purification and RNA isolation suitable for high-throughput transcriptional analysis of cell-type responses to biotic stresses. Mol Plant Microbe Interact 26(8):844–849. doi:10.1094/MPMI-03-13-0081-TA

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Bargmann BO, Birnbaum KD (2010) Fluorescence activated cell sorting of plant protoplasts. J Vis Exp 36: doi:1673 [pii] 10.3791/1673

    Google Scholar 

  38. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320(5878):942–945. doi:10.1126/science.1153795, 1153795 [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Galbraith DW, Janda J, Lambert GM (2011) Multiparametric analysis, sorting, and transcriptional profiling of plant protoplasts and nuclei according to cell type. Methods Mol Biol 699:407–429. doi:10.1007/978-1-61737-950-5_20

    Article  CAS  PubMed  Google Scholar 

  40. Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci U S A 105(2):803–808. doi:10.1073/pnas.0709559105, 0709559105 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Yadav RK, Girke T, Pasala S, Xie M, Reddy GV (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci U S A 106(12):4941–4946. doi:10.1073/pnas.0900843106, 0900843106 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Yadav RK, Tavakkoli M, Xie M, Girke T, Reddy GV (2014) A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche. Development 141(13):2735–2744. doi:10.1242/dev.106104, 141/13/2735 [pii]

    Article  CAS  PubMed  Google Scholar 

  43. Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154(2):611–621. doi:10.1104/pp.110.162271, pp.110.162271 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kovtun Y, Chiu WL, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395(6703):716–720. doi:10.1038/27240

    Article  CAS  PubMed  Google Scholar 

  45. Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425(6957):521–525. doi:10.1038/nature01984, nature01984 [pii]

    Article  CAS  PubMed  Google Scholar 

  46. Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274(5294):1900–1902

    Article  CAS  PubMed  Google Scholar 

  47. Confraria A, Martinho C, Elias A, Rubio-Somoza I, Baena-Gonzalez E (2013) miRNAs mediate SnRK1-dependent energy signaling in Arabidopsis. Front. Plant Sci 4:197. doi:10.3389/fpls.2013.00197

    Google Scholar 

  48. Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97(6):2940–2945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462(7273):660–664. doi:10.1038/nature08599, nature08599 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Xiang L, Le Roy K, Bolouri-Moghaddam MR, Vanhaecke M, Lammens W, Rolland F, Van den Ende W (2011) Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana. J Exp Bot 62(11):3849–3862. doi:10.1093/jxb/err069, err069 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Li J, Hou S, Wang X, Li Y, Ren D, Chen S, Tang X, Zhou JM (2010) A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell 22(6):2033–2044. doi:10.1105/tpc.110.075697, tpc.110.075697 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J, Zhou JM, Chai J (2012) Chitin-induced dimerization activates a plant immune receptor. Science 336(6085):1160–1164. doi:10.1126/science.1218867, 336/6085/1160 [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Li M, Berendzen KW, Schoffl F (2010) Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol Biol 73(4-5):559–567. doi:10.1007/s11103-010-9643-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Niu Y, Sheen J (2012) Transient expression assays for quantifying signaling output. Methods Mol Biol 876:195–206. doi:10.1007/978-1-61779-809-2_16

    Article  CAS  PubMed  Google Scholar 

  56. Xiang C, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40(4):711–717

    Article  CAS  PubMed  Google Scholar 

  57. Bush J, Jander G, Ausubel FM (2006) Prevention and control of pests and diseases. Methods Mol Biol 323:13–25. doi:10.1385/1-59745-003-0:13

    PubMed  Google Scholar 

  58. Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis Sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16. doi:10.1186/1746-4811-5-16, 1746-4811-5-16 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  59. Sheen J (1990) Metabolic repression of transcription in higher plants. Plant Cell 2(10):1027–1038. doi:10.1105/tpc.2.10.10272/10/1027 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Sheen J (1991) Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell 3(3):225–245. doi:10.1105/tpc.3.3.225, 3/3/225 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Shen J, Fu J, Ma J, Wang X, Gao C, Zhuang C, Wan J, Jiang L (2014) Isolation, culture, and transient transformation of plant protoplasts. Curr Protoc Cell Biol 63:2.8.1–2.8.17. doi:10.1002/0471143030.cb0208s63

    Article  Google Scholar 

  62. Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15(1):141–152. doi:10.1016/j.molcel.2004.06.023S1097276504003491 [pii]

    Article  CAS  PubMed  Google Scholar 

  63. Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279(40):41758–41766. doi:10.1074/jbc.M405259200M405259200 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Vera Nunes for excellent plant care and all the members of the Baena-González lab for helping to establish various reporter assays in Arabidopsis mesophyll protoplasts. We also thank Jen Sheen (Harvard Medical School/Massachusetts General Hospital) for all the guidance and training regarding this technique and cell signaling. Ana Confraria is supported by a fellowship from Fundação para a Ciência e Tecnologia (FCT, SFRH/BPD/47280/2008). The Baena-González lab is supported by grants from the EMBO Installation program, the Marie Curie ITN program (“MERIT”, PITN-GA-2010-264474) and FCT (PTDC/BIA-PLA/3937/2012; Research unit GREEN-it "Bioresources for Sustainability” UID/Multi/04551/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Baena-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Confraria, A., Baena-González, E. (2016). Using Arabidopsis Protoplasts to Study Cellular Responses to Environmental Stress. In: Duque, P. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 1398. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3356-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3356-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3354-9

  • Online ISBN: 978-1-4939-3356-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics